Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Srinidhi Nagaraja is active.

Publication


Featured researches published by Srinidhi Nagaraja.


Journal of the Acoustical Society of America | 2012

Relationships of quantitative ultrasound parameters with cancellous bone microstructure in human calcaneus in vitro

Keith A. Wear; Srinidhi Nagaraja; Maureen L. Dreher; Sheng L. Gibson

Ultrasound parameters (attenuation, phase velocity, and backscatter), bone mineral density (BMD), and microarchitectural features were measured on 29 human cancellous calcaneus samples in vitro. Regression analysis was performed to predict ultrasound parameters from BMD and microarchitectural features. The best univariate predictors of the ultrasound parameters were the indexes of bone quantity: BMD and bone volume fraction (BV/TV). The most predictive univariate models for attenuation, phase velocity, and backscatter coefficient yielded adjusted squared correlation coefficients of 0.69-0.73. Multiple regression models yielded adjusted correlation coefficients of 0.74-0.83. Therefore attenuation, phase velocity, and backscatter are primarily determined by bone quantity, but multiple regression models based on bone quantity plus microarchitectural features achieve slightly better predictive performance than models based on bone quantity alone.


Journal of The Mechanical Behavior of Biomedical Materials | 2015

High compressive pre-strains reduce the bending fatigue life of nitinol wire

Shikha Gupta; Alan R. Pelton; Jason D. Weaver; Xiao-Yan Gong; Srinidhi Nagaraja

Prior to implantation, Nitinol-based transcatheter endovascular devices are subject to a complex thermo-mechanical pre-strain associated with constraint onto a delivery catheter, device sterilization, and final deployment. Though such large thermo-mechanical excursions are known to impact the microstructural and mechanical properties of Nitinol, their effect on fatigue properties is still not well understood. The present study investigated the effects of large thermo-mechanical pre-strains on the fatigue of pseudoelastic Nitinol wire using fully reversed rotary bend fatigue (RBF) experiments. Electropolished Nitinol wires were subjected to a 0%, 8% or 10% bending pre-strain and RBF testing at 0.3-1.5% strain amplitudes for up to 10(8) cycles. The imposition of 8% or 10% bending pre-strain resulted in residual set in the wire. Large pre-strains also significantly reduced the fatigue life of Nitinol wires below 0.8% strain amplitude. While 0% and 8% pre-strain wires exhibited distinct low-cycle and high-cycle fatigue regions, reaching run out at 10(8) cycles at 0.6% and 0.4% strain amplitude, respectively, 10% pre-strain wires continued to fracture at less than 10(5) cycles, even at 0.3% strain amplitude. Furthermore, over 70% fatigue cracks were found to initiate on the compressive pre-strain surface in pre-strained wires. In light of the texture-dependent tension-compression asymmetry in Nitinol, this reduction in fatigue life and preferential crack initiation in pre-strained wires is thought to be attributed to compressive pre-strain-induced plasticity and tensile residual stresses as well as the formation of martensite variants. Despite differences in fatigue life, SEM revealed that the size, shape and morphology of the fatigue fracture surfaces were comparable across the pre-strain levels. Further, the mechanisms underlying fatigue were found to be similar; despite large differences in cycles to failure across strain amplitudes and pre-strain levels, cracks initiated from surface inclusions in nearly all wires. Compressive pre-strain-induced damage may accelerate such crack initiation, thereby reducing fatigue life. The results of the present study indicate that large compressive pre-strains are detrimental to the fatigue properties of Nitinol, and, taken together, the findings underscore the importance of accounting for thermo-mechanical history in the design and testing of wire-based percutaneous implants.


The Spine Journal | 2013

Vertebroplasty increases compression of adjacent IVDs and vertebrae in osteoporotic spines

Srinidhi Nagaraja; Hassan K. Awada; Maureen L. Dreher; Shikha Gupta; Scott W. Miller

BACKGROUND CONTEXT Approximately 25% of vertebroplasty patients experience subsequent fractures within 1 year of treatment, and vertebrae adjacent to the cemented level are up to three times more likely to fracture than those further away. The increased risk of adjacent fractures postaugmentation raises concerns that treatment of osteoporotic compression fractures with vertebroplasty may negatively impact spine biomechanics. PURPOSE To quantify the biomechanical effects of vertebroplasty on adjacent intervertebral discs (IVDs) and vertebral bodies (VBs). STUDY DESIGN A biomechanics study was conducted using cadaveric thoracolumbar spinal columns from elderly women (age range, 51-98 years). METHODS Five level motion segments (T11-L3) were assigned to a vertebroplasty treated or untreated control group (n=10/group) such that bone mineral density (BMD), trabecular architecture, and age were similar between groups. Compression fractures were created in the L1 vertebra of all specimens, and polymethylmethacrylate bone cement was injected into the fractured vertebra of vertebroplasty specimens. All spine segments underwent cyclic axial compression for 115,000 cycles. Microcomputed tomography imaging was performed before and after cyclic loading to quantify compression in adjacent VBs and IVDs. RESULTS Cyclic loading increased strains 3% on average in the vertebroplasty group when compared with controls after 115,000 cycles. This global strain manifested locally as approximately fourfold more compression in the superior VB (T12) and two- to fourfold higher axial and circumferential deformations in the superior IVD (T12-L1) of vertebroplasty-treated specimens when compared with untreated controls. Low BMD and high cement fill were significant factors that explained the increased strain in the vertebroplasty-treated group. CONCLUSIONS These data indicate that vertebroplasty alters spine biomechanics resulting in increased compression of adjacent VB and IVD in severely osteoporotic women and may be the basis for clinical reports of adjacent fractures after vertebroplasty.


Journal of The Mechanical Behavior of Biomedical Materials | 2014

Characterization of load dependent creep behavior in medically relevant absorbable polymers

Maureen L. Dreher; Srinidhi Nagaraja; Hieu Bui; Danny Hong

While synthetic absorbable polymers have a substantial history of use in medical devices, their use is expanding and becoming more prevalent for devices where long term loading and structural support is required. In addition, there is evidence that current absorbable medical devices may experience permanent deformations, warping (out of plane twisting), and geometric changes in vivo. For clinical indications with long term loading or structural support requirements, understanding the materials viscoelastic properties becomes increasingly important whereas these properties have not been used historically as preclinical indications of performance or design considerations. In this study we measured the static creep, creep recovery and cyclic creep responses of common medically relevant absorbable materials (i.e., poly(l-lactide, PLLA) and poly(l-co-glycolide, PLGA) over a range of physiologically relevant loading magnitudes. The results indicate that both PLLA and PLGA exhibit creep behavior and failure at loads significantly less than the yield or ultimate properties of the material and that significant material specific responses to loading exist. In addition, we identified a strong correlation between the extent of creep in the material and its crystallinity. Results of the study provide new information on the creep behavior of PLLA and PLGA and support the use of viscoelastic properties of absorbable polymers as part of the material selection process.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2014

Localization of focused-ultrasound beams in a tissue phantom, using remote thermocouple arrays

Prasanna Hariharan; Seyed Ahmad Reza Dibaji; Rupak K. Banerjee; Srinidhi Nagaraja; Matthew R. Myers

In focused-ultrasound procedures such as vessel cauterization or clot lysis, targeting accuracy is critical. To investigate the targeting accuracy of the focused-ultrasound systems, tissue phantoms embedded with thermocouples can be employed. This paper describes a method that utilizes an array of thermocouples to localize the focused ultrasound beam. All of the thermocouples are located away from the beam, so that thermocouple artifacts and sensor interference are minimized. Beam propagation and temperature rise in the phantom are simulated numerically, and an optimization routine calculates the beam location that produces the best agreement between the numerical temperature values and those measured with thermocouples. The accuracy of the method was examined as a function of the array characteristics, including the number of thermocouples in the array and their orientation. For exposures with a 3.3-MHz source, the remote-thermocouple technique was able to predict the focal position to within 0.06 mm. Once the focal location is determined using the localization method, temperatures at desired locations (including the focus) can be estimated from remote thermocouple measurements by curve fitting an analytical solution to the heat equation. Temperature increases in the focal plane were predicted to within 5% agreement with measured values using this method.


Journal of Medical Devices-transactions of The Asme | 2017

The Role of Computational Modeling and Simulation in the Total Product Life Cycle of Peripheral Vascular Devices

Tina M. Morrison; Maureen L. Dreher; Srinidhi Nagaraja; Leonardo M. Angelone; Wolfgang Kainz

The total product life cycle (TPLC) of medical devices has been defined by four stages: discovery and ideation, regulatory decision, product launch, and postmarket monitoring. Manufacturers of medical devices intended for use in the peripheral vasculature, such as stents, inferior vena cava (IVC) filters, and stent-grafts, mainly use computational modeling and simulation (CM&S) to aid device development and design optimization, supplement bench testing for regulatory decisions, and assess postmarket changes or failures. For example, computational solid mechanics and fluid dynamics enable the investigation of design limitations in the ideation stage. To supplement bench data in regulatory submissions, manufactures can evaluate the effects of anatomical characteristics and expected in vivo loading environment on device performance. Manufacturers might also harness CM&S to aid root-cause analyses that are necessary when failures occur postmarket, when the device is exposed to broad clinical use. Once identified, CM&S tools can then be used for redesign to address the failure mode and re-establish the performance profile with the appropriate models. The Center for Devices and Radiological Health (CDRH) wants to advance the use of CM&S for medical devices and supports the development of virtual physiological patients, clinical trial simulations, and personalized medicine. Thus, the purpose of this paper is to describe specific examples of how CM&S is currently used to support regulatory submissions at different phases of the TPLC and to present some of the stakeholder-led initiatives for advancing CM&S for regulatory decision-making.


Biomedical Instrumentation & Technology | 2015

Evaluating Device Design and Cleanability of Orthopedic Device Models Contaminated with a Clinically Relevant Bone Test Soil.

Anne D. Lucas; Srinidhi Nagaraja; Edward A. Gordon; Victoria M. Hitchins

UNLABELLED Reusable medical devices need to be cleaned prior to disinfection or sterilization and subsequent use to prevent infections. The cleanability of medical devices depends in part on the design of the device. This study examined how models of orthopedic medical devices of increasing complexity retain calcium phosphate bone cement, a relevant test soil for these devices. METHODS The dye Alizarin Red S and micro-computed tomography (μCT) were used to assess the amount and location of bone cement debris in a series of model orthopedic devices. Testing was performed after soiling and cleaning once, and soiling and cleaning 10 times. RESULTS The color change of the dye after reacting with the bone cement was useful for indicating the presence of bone cement in these models. High-resolution μCT analysis provided the volume and location of the bone cement. Models that were more complex retained significantly more bone debris than simpler designs. Model devices repeatedly soiled and cleaned 10 times retained significantly more bone debris than those soiled and cleaned once. CONCLUSION Significantly more bone cement was retained in the more complex lumen structures. This information may be useful in designing reusable orthopedic devices, and other complex medical devices with lumens.


Bone | 2017

Relationships among ultrasonic and mechanical properties of cancellous bone in human calcaneus in vitro

Keith A. Wear; Srinidhi Nagaraja; Maureen L. Dreher; Saghi Sadoughi; Shan Zhu; Tony M. Keaveny

Clinical bone sonometers applied at the calcaneus measure broadband ultrasound attenuation and speed of sound. However, the relation of ultrasound measurements to bone strength is not well-characterized. Addressing this issue, we assessed the extent to which ultrasonic measurements convey in vitro mechanical properties in 25 human calcaneal cancellous bone specimens (approximately 2×4×2cm). Normalized broadband ultrasound attenuation, speed of sound, and broadband ultrasound backscatter were measured with 500kHz transducers. To assess mechanical properties, non-linear finite element analysis, based on micro-computed tomography images (34-micron cubic voxel), was used to estimate apparent elastic modulus, overall specimen stiffness, and apparent yield stress, with models typically having approximately 25-30 million elements. We found that ultrasound parameters were correlated with mechanical properties with R=0.70-0.82 (p<0.001). Multiple regression analysis indicated that ultrasound measurements provide additional information regarding mechanical properties beyond that provided by bone quantity alone (p≤0.05). Adding ultrasound variables to linear regression models based on bone quantity improved adjusted squared correlation coefficients from 0.65 to 0.77 (stiffness), 0.76 to 0.81 (apparent modulus), and 0.67 to 0.73 (yield stress). These results indicate that ultrasound can provide complementary (to bone quantity) information regarding mechanical behavior of cancellous bone.


Acta Biomaterialia | 2017

The effects of surface processing on in-vivo corrosion of Nitinol stents in a porcine model

Stacey J.L. Sullivan; Daniel Madamba; Shiril Sivan; Katie Miyashiro; Maureen L. Dreher; Christine Trépanier; Srinidhi Nagaraja

A major limitation with current assessments of corrosion in metallic medical devices is the lack of correlation between in-vitro and in-vivo corrosion performance. Therefore, the objective of this study was to elucidate the relationship between pitting corrosion measured by breakdown potentials (Eb) in ASTM F2129 testing and corrosion resistance in-vivo. Four groups of Nitinol stents were manufactured using different processing methods to create unique surface properties. The stents were implanted into iliac arteries of minipigs for six months and explanted for corrosion analysis. Scanning electron microscopy and energy dispersive X-ray spectrometry analyses indicated that stents with a thick complex thermal oxide (420nm) and high corrosion resistance in-vitro (Eb=975±94mV) were free from detectable corrosion in-vivo and exhibited no changes in Ni/Ti ratio when compared to non-implanted controls. This result was also found in mechanically polished stents with a thin native oxide (4nm; Eb=767±226mV). In contrast, stents with a moderately thick thermal oxide (130nm) and low corrosion resistance in-vitro (Eb=111±63mV) possessed corrosion with associated surface microcracks in-vivo. In addition, Ni/Ti ratios in corroded regions were significantly lower compared to non-corroded adjacent areas on explanted stents. When stents were minimally processed (i.e. retained native tube oxide from the drawing process), a thick thermal oxide was present (399nm) with low in-vitro corrosion resistance (Eb=68±29mV) resulting in extensive in-vivo pitting. These findings demonstrate that functional corrosion testing combined with a detailed understanding of the surface characteristics of a Nitinol medical device can provide insight into in-vivo corrosion resistance. STATEMENT OF SIGNIFICANCE Nitinol is a commonly used material in the medical device industry. However, correlations between surface processing of nitinol and in-vivo corrosion has yet to be established. Elucidating the link between in-vivo corrosion and pre-clinical characterization can aid in improved prediction of clinical safety and performance of nitinol devices. We addressed this knowledge gap by fabricating nitinol stents to possess distinct surface properties and evaluating their corrosion susceptibility both in-vitro and after six months of in-vivo exposure. Relationships between stent processing, surface characterization, corrosion bench testing, and outcomes from explanted devices are discussed. These findings highlight the importance of surface characterization in nitinol devices and provide in-vitro pitting corrosion levels that can induce in-vivo corrosion in nitinol stents.


Journal of Neurosurgery | 2015

Effects of vertebroplasty on endplate subsidence in elderly female spines.

Srinidhi Nagaraja; Hassan K. Awada; Maureen L. Dreher; John T. Bouck; Shikha Gupta

OBJECT The aim in this study was to quantify the effects of vertebroplasty on endplate subsidence in treated and adjacent vertebrae and their relationship to endplate thickness and underlying trabecular bone in elderly female spines. METHODS Vertebral compression fractures were created in female cadaveric (age range 51-88 years) thoracolumbar spine segments. Specimens were placed into either the control or vertebroplasty group (n = 9/group) such that bone mineral density, trabecular microarchitecture, and age were statistically similar between groups. For the vertebroplasty group, polymethylmethacrylate bone cement was injected into the fractured vertebral body under fluoroscopy. Cyclic compression (685-1370 N sinusoid) was performed on all spine segments for 115,000 cycles. Micro-CT scans were obtained before and after cyclic loading to quantify endplate subsidence. Maximum subsidence was compared between groups in the caudal endplate of the superior adjacent vertebra (SVcau); cranial (TVcra) and caudal (TVcau) endplates of the treated vertebra; and the cranial endplate of the inferior adjacent vertebra (IVcra). In addition, micro-CT images were used to quantify average endplate thickness and trabecular bone volume fraction. These parameters were then correlated with maximum endplate subsidence for each endplate. RESULTS The maximum subsidence in SVcau endplate for the vertebroplasty group (0.34 ± 0.58 mm) was significantly (p < 0.05) greater than for the control group (-0.13 ± 0.27 mm). Maximum subsidence in the TVcra, TVcau, and IVcra endplates were greater in the vertebroplasty group, but these differences were not significant (p > 0.16). Increased subsidence in the vertebroplasty group manifested locally in the anterior region of the SVcau endplate and in the posterior region of the TVcra and TVcau endplates (p < 0.10). Increased subsidence was observed in thinner endplates with lower trabecular bone volume fraction for both vertebroplasty and control groups (R(2) correlation up to 62%). In the SVcau endplate specifically, these 2 covariates aided in understanding subsidence differences between vertebroplasty and control groups. CONCLUSIONS Bone cement injected during vertebroplasty alters local biomechanics in elderly female spines, resulting in increased endplate disruption in treated and superior adjacent vertebrae. More specifically, bone cement increases subsidence in the posterior regions of the treated endplates and the anterior region of the superior caudal endplate. This increased subsidence may be the initial mechanism leading to subsequent compression fractures after vertebroplasty, particularly in vertebrae superior to the treated level.

Collaboration


Dive into the Srinidhi Nagaraja's collaboration.

Top Co-Authors

Avatar

Maureen L. Dreher

Center for Devices and Radiological Health

View shared research outputs
Top Co-Authors

Avatar

Vivek Palepu

Center for Devices and Radiological Health

View shared research outputs
Top Co-Authors

Avatar

Shikha Gupta

Center for Devices and Radiological Health

View shared research outputs
Top Co-Authors

Avatar

Hassan K. Awada

Center for Devices and Radiological Health

View shared research outputs
Top Co-Authors

Avatar

Jonathan H. Peck

Center for Devices and Radiological Health

View shared research outputs
Top Co-Authors

Avatar

Keith A. Wear

Center for Devices and Radiological Health

View shared research outputs
Top Co-Authors

Avatar

Melvin D. Helgeson

Walter Reed National Military Medical Center

View shared research outputs
Top Co-Authors

Avatar

Stacey J.L. Sullivan

Center for Devices and Radiological Health

View shared research outputs
Top Co-Authors

Avatar

Anne D. Lucas

Center for Devices and Radiological Health

View shared research outputs
Top Co-Authors

Avatar

Danny Hong

Center for Devices and Radiological Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge