Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Srinivas Nagaraj is active.

Publication


Featured researches published by Srinivas Nagaraj.


Nature Reviews Immunology | 2009

Myeloid-derived suppressor cells as regulators of the immune system

Dmitry I. Gabrilovich; Srinivas Nagaraj

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that expand during cancer, inflammation and infection, and that have a remarkable ability to suppress T-cell responses. These cells constitute a unique component of the immune system that regulates immune responses in healthy individuals and in the context of various diseases. In this Review, we discuss the origin, mechanisms of expansion and suppressive functions of MDSCs, as well as the potential to target these cells for therapeutic benefit.


Journal of Immunology | 2008

Subsets of Myeloid-Derived Suppressor Cells in Tumor Bearing Mice

Je-In Youn; Srinivas Nagaraj; Michelle Collazo; Dmitry I. Gabrilovich

Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of cells that play a critical role in tumor associated immune suppression. In an attempt to identify a specific subset of MDSC primarily responsible for immunosuppressive features of these cells, 10 different tumor models were investigated. All models showed variable but significant increase in the population of MDSC. Variability of MDSC expansion in vivo matched closely the effect of tumor cell condition medium in vitro. MDSC consists of two major subsets of Ly6G+Ly6Clow granulocytic and Ly6G−Ly6Chigh monocytic cells. Granulocytic MDSC have increased level of reactive oxygen species and undetectable level of NO whereas monocytic MDSC had increased level of NO but undetectable levels of reactive oxygen species. However, their suppressive activity per cell basis was comparable. Almost all tumor models demonstrated a preferential expansion of granulocytic subset of MDSC. We performed a phenotypical and functional analysis of several surface molecules previously suggested to be involved in MDSC-mediated suppression of T cells: CD115, CD124, CD80, PD-L1, and PD-L2. Although substantial proportion of MDSC expressed those molecules no differences in the level of their expression or the proportion, positive cells were found between MDSC and cells from tumor-free mice that lack immune suppressive activity. The level of MDSC-mediated T cell suppression did not depend on the expression of these molecules. These data indicate that suppressive features of MDSC is caused not by expansion of a specific subset but more likely represent a functional state of these cells.


Nature Medicine | 2007

Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer

Srinivas Nagaraj; Kapil Gupta; Vladimir Pisarev; Leo Kinarsky; Simon Sherman; Loveleen Kang; Donna L. Herber; Jonathan P. Schneck; Dmitry I. Gabrilovich

Antigen-specific CD8+ T-cell tolerance, induced by myeloid-derived suppressor cells (MDSCs), is one of the main mechanisms of tumor escape. Using in vivo models, we show here that MDSCs directly disrupt the binding of specific peptide–major histocompatibility complex (pMHC) dimers to CD8-expressing T cells through nitration of tyrosines in a T-cell receptor (TCR)-CD8 complex. This process makes CD8-expressing T cells unable to bind pMHC and to respond to the specific peptide, although they retain their ability to respond to nonspecific stimulation. Nitration of TCR-CD8 is induced by MDSCs through hyperproduction of reactive oxygen species and peroxynitrite during direct cell-cell contact. Molecular modeling suggests specific sites of nitration that might affect the conformational flexibility of TCR-CD8 and its interaction with pMHC. These data identify a previously unknown mechanism of T-cell tolerance in cancer that is also pertinent to many pathological conditions associated with accumulation of MDSCs.


Journal of Experimental Medicine | 2008

Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein

Pingyan Cheng; Cesar A. Corzo; Noreen Luetteke; Bin Yu; Srinivas Nagaraj; Marylin M. Bui; Myrna L. Ortiz; Wolfgang Nacken; Clemens Sorg; Thomas Vogl; J. Roth; Dmitry I. Gabrilovich

Accumulation of myeloid-derived suppressor cells (MDSCs) associated with inhibition of dendritic cell (DC) differentiation is one of the major immunological abnormalities in cancer and leads to suppression of antitumor immune responses. The molecular mechanism of this phenomenon remains unclear. We report here that STAT3-inducible up-regulation of the myeloid-related protein S100A9 enhances MDSC production in cancer. Mice lacking this protein mounted potent antitumor immune responses and rejected implanted tumors. This effect was reversed by administration of wild-type MDSCs from tumor-bearing mice to S100A9-null mice. Overexpression of S100A9 in cultured embryonic stem cells or transgenic mice inhibited the differentiation of DCs and macrophages and induced accumulation of MDSCs. This study demonstrates that tumor-induced up-regulation of S100A9 protein is critically important for accumulation of MDSCs and reveals a novel molecular mechanism of immunological abnormalities in cancer.


Journal of Experimental Medicine | 2007

MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis

Matthew J. Delano; Philip O. Scumpia; Jason S. Weinstein; Dominique Coco; Srinivas Nagaraj; Kindra M. Kelly-Scumpia; Kerri O'Malley; James L. Wynn; Svetlana Antonenko; Samer Z. Al-Quran; Ryan Swan; Chun-Shiang Chung; Mark A. Atkinson; Reuben Ramphal; Dmitry I. Gabrilovich; Wesley H. Reeves; Alfred Ayala; Joseph S. Phillips; Drake LaFace; Paul G. Heyworth; Michael Clare-Salzler; Lyle L. Moldawer

Polymicrobial sepsis alters the adaptive immune response and induces T cell suppression and Th2 immune polarization. We identify a GR-1+CD11b+ population whose numbers dramatically increase and remain elevated in the spleen, lymph nodes, and bone marrow during polymicrobial sepsis. Phenotypically, these cells are heterogeneous, immature, predominantly myeloid progenitors that express interleukin 10 and several other cytokines and chemokines. Splenic GR-1+ cells effectively suppress antigen-specific CD8+ T cell interferon (IFN) γ production but only modestly suppress antigen-specific and nonspecific CD4+ T cell proliferation. GR-1+ cell depletion in vivo prevents both the sepsis-induced augmentation of Th2 cell–dependent and depression of Th1 cell–dependent antibody production. Signaling through MyD88, but not Toll-like receptor 4, TIR domain–containing adaptor-inducing IFN-β, or the IFN-α/β receptor, is required for complete GR-1+CD11b+ expansion. GR-1+CD11b+ cells contribute to sepsis-induced T cell suppression and preferential Th2 polarization.


Cancer Research | 2008

Tumor Escape Mechanism Governed by Myeloid-Derived Suppressor Cells

Srinivas Nagaraj; Dmitry I. Gabrilovich

T-cell nonresponsiveness is a critical factor in immune escape and myeloid-derived suppressor cells play a major role in organizing this phenomenon. Recent findings indicate that myeloid-derived suppressor cells can induce antigen-specific CD8(+) T-cell tolerance through a posttranslation mechanism which involves modification (nitration) of CD8 and the T-cell receptor itself on the T-cell surface. Elucidation of this mechanism of T-cell tolerance offers new opportunities for therapeutic corrections of immune escape in cancer.


Journal of Immunology | 2005

Tumor-Associated CD8+ T Cell Tolerance Induced by Bone Marrow-Derived Immature Myeloid Cells

Sergei Kusmartsev; Srinivas Nagaraj; Dmitry I. Gabrilovich

T cell tolerance is a critical element of tumor escape. However, the mechanism of tumor-associated T cell tolerance remains unresolved. Using an experimental system utilizing the adoptive transfer of transgenic T cells into naive recipients, we found that the population of Gr-1+ immature myeloid cells (ImC) from tumor-bearing mice was able to induce CD8+ T cell tolerance. These ImC accumulate in large numbers in spleens, lymph nodes, and tumor tissues of tumor-bearing mice and are comprised of precursors of myeloid cells. Neither ImC from control mice nor progeny of tumor-derived ImC, including tumor-derived CD11c+ dendritic cells, were able to render T cells nonresponsive. ImC are able to take up soluble protein in vivo, process it, and present antigenic epitopes on their surface and induce Ag-specific T cell anergy. Thus, this is a first demonstration that in tumor-bearing mice CD8+ T cell tolerance is induced primarily by ImC that may have direct implications for cancer immunotherapy.


Journal of Clinical Investigation | 2010

Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice

Rupal Ramakrishnan; Deepak Assudani; Srinivas Nagaraj; Terri B. Hunter; Hyun Il Cho; Scott Antonia; Soner Altiok; Esteban Celis; Dmitry I. Gabrilovich

Cancer immunotherapy faces a serious challenge because of low clinical efficacy. Recently, a number of clinical studies have reported the serendipitous finding of high rates of objective clinical response when cancer vaccines are combined with chemotherapy in patients with different types of cancers. However, the mechanism of this phenomenon remains unclear. Here, we tested in mice several cancer vaccines and an adoptive T cell transfer approach to cancer immunotherapy in combination with several widely used chemotherapeutic drugs. We found that chemotherapy made tumor cells more susceptible to the cytotoxic effect of CTLs through a dramatic perforin-independent increase in permeability to GrzB released by the CTLs. This effect was mediated via upregulation of mannose-6-phosphate receptors on the surface of tumor cells and was observed in mouse and human cells. When combined with chemotherapy, CTLs raised against specific antigens were able to induce apoptosis in neighboring tumor cells that did not express those antigens. These data suggest that small numbers of CTLs could mediate a potent antitumor effect when combined with chemotherapy. In addition, these results provide a strong rationale for combining these modalities for the treatment of patients with advanced cancers.


Journal of Immunology | 2010

Mechanism of T Cell Tolerance Induced by Myeloid-Derived Suppressor Cells

Srinivas Nagaraj; Adam G. Schrum; Hyun Il Cho; Esteban Celis; Dmitry I. Gabrilovich

Ag-specific T cell tolerance plays a critical role in tumor escape. Recent studies implicated myeloid-derived suppressor cells (MDSCs) in the induction of CD8+ T cell tolerance in tumor-bearing hosts. However, the mechanism of this phenomenon remained unclear. We have found that incubation of Ag-specific CD8+ T cells, with peptide-loaded MDSCs, did not induce signaling downstream of TCR. However, it prevented subsequent signaling from peptide-loaded dendritic cells. Using double TCR transgenic CD8+ T cells, we have demonstrated that MDSC induced tolerance to only the peptide, which was presented by MDSCs. T cell response to the peptide specific to the other TCR was not affected. Incubation of MDSCs with Ag-specific CD8+ T cells caused nitration of the molecules on the surface of CD8+ T cells, localized to the site of physical interaction between MDSC and T cells, which involves preferentially only TCR specific for the peptide presented by MDSCs. Postincubation with MDSCs, only nitrotyrosine-positive CD8+ T cells demonstrated profound nonresponsiveness to the specific peptide, whereas nitrotyrosine-negative CD8+ T cells responded normally to that stimulation. MDSCs caused dissociation between TCR and CD3ζ molecules, disrupting TCR complexes on T cells. Thus, these data describe a novel mechanism of Ag-specific CD8+ T cell tolerance in cancer.


Cancer Research | 2005

Regulation of Dendritic Cell Differentiation and Antitumor Immune Response in Cancer by Pharmacologic-Selective Inhibition of the Janus-Activated Kinase 2/Signal Transducers and Activators of Transcription 3 Pathway

Yulia Nefedova; Srinivas Nagaraj; Amsler Rosenbauer; Carlos A. Muro-Cacho; Said M. Sebti; Dmitry I. Gabrilovich

Abnormal dendritic cell differentiation and accumulation of immunosuppressive myeloid cells in cancer is one of the major factors of tumor nonresponsiveness. We have previously shown that hyperactivation of the Janus-activated kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3) induced by tumor-derived factors (TDF) is responsible for abnormal dendritic cell differentiation. Here, using a novel selective inhibitor of JAK2/STAT3 JSI-124, we investigated the possibility of pharmacologic regulation of dendritic cell differentiation in cancer. Our experiments in vitro have shown that JSI-124 overcomes the differentiation block induced by TDF and promotes the differentiation of mature dendritic cells and macrophages. JSI-124 significantly reduced the presence of immature myeloid cells in vivo and promoted accumulation of mature dendritic cells. In addition to a direct antitumor effect in several animal models, JSI-124 significantly enhanced the effect of cancer immunotherapy. This indicates that pharmacologic inhibition of the JAK2/STAT3 pathway can be an important new therapeutic strategy to enhance antitumor activity of cancer immunotherapy.

Collaboration


Dive into the Srinivas Nagaraj's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allison Nelson

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Esteban Celis

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Shyam S. Mohapatra

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Sergei Kusmartsev

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Subhra Mohapatra

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Je-In Youn

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge