Srinivas Rachakonda
The Mind Research Network
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Srinivas Rachakonda.
Frontiers in Systems Neuroscience | 2011
Elena A. Allen; Erik B. Erhardt; Eswar Damaraju; William Gruner; Judith M. Segall; Rogers F. Silva; Martin Havlicek; Srinivas Rachakonda; Jill Fries; Ravi Kalyanam; Andrew M. Michael; Arvind Caprihan; Jessica A. Turner; Tom Eichele; Steven Adelsheim; Angela D. Bryan; Juan Bustillo; Vincent P. Clark; Sarah W. Feldstein Ewing; Francesca M. Filbey; Corey C. Ford; Kent E. Hutchison; Rex E. Jung; Kent A. Kiehl; Piyadasa W. Kodituwakku; Yuko M. Komesu; Andrew R. Mayer; Godfrey D. Pearlson; John P. Phillips; Joseph Sadek
As the size of functional and structural MRI datasets expands, it becomes increasingly important to establish a baseline from which diagnostic relevance may be determined, a processing strategy that efficiently prepares data for analysis, and a statistical approach that identifies important effects in a manner that is both robust and reproducible. In this paper, we introduce a multivariate analytic approach that optimizes sensitivity and reduces unnecessary testing. We demonstrate the utility of this mega-analytic approach by identifying the effects of age and gender on the resting-state networks (RSNs) of 603 healthy adolescents and adults (mean age: 23.4 years, range: 12–71 years). Data were collected on the same scanner, preprocessed using an automated analysis pipeline based in SPM, and studied using group independent component analysis. RSNs were identified and evaluated in terms of three primary outcome measures: time course spectral power, spatial map intensity, and functional network connectivity. Results revealed robust effects of age on all three outcome measures, largely indicating decreases in network coherence and connectivity with increasing age. Gender effects were of smaller magnitude but suggested stronger intra-network connectivity in females and more inter-network connectivity in males, particularly with regard to sensorimotor networks. These findings, along with the analysis approach and statistical framework described here, provide a useful baseline for future investigations of brain networks in health and disease.
Human Brain Mapping | 2011
Erik B. Erhardt; Srinivas Rachakonda; Edward J. Bedrick; Elena A. Allen; Tülay Adali; Vince D. Calhoun
Spatial independent component analysis (ICA) applied to functional magnetic resonance imaging (fMRI) data identifies functionally connected networks by estimating spatially independent patterns from their linearly mixed fMRI signals. Several multi‐subject ICA approaches estimating subject‐specific time courses (TCs) and spatial maps (SMs) have been developed, however, there has not yet been a full comparison of the implications of their use. Here, we provide extensive comparisons of four multi‐subject ICA approaches in combination with data reduction methods for simulated and fMRI task data. For multi‐subject ICA, the data first undergo reduction at the subject and group levels using principal component analysis (PCA). Comparisons of subject‐specific, spatial concatenation, and group data mean subject‐level reduction strategies using PCA and probabilistic PCA (PPCA) show that computationally intensive PPCA is equivalent to PCA, and that subject‐specific and group data mean subject‐level PCA are preferred because of well‐estimated TCs and SMs. Second, aggregate independent components are estimated using either noise‐free ICA or probabilistic ICA (PICA). Third, subject‐specific SMs and TCs are estimated using back‐reconstruction. We compare several direct group ICA (GICA) back‐reconstruction approaches (GICA1‐GICA3) and an indirect back‐reconstruction approach, spatio‐temporal regression (STR, or dual regression). Results show the earlier group ICA (GICA1) approximates STR, however STR has contradictory assumptions and may show mixed‐component artifacts in estimated SMs. Our evidence‐based recommendation is to use GICA3, introduced here, with subject‐specific PCA and noise‐free ICA, providing the most robust and accurate estimated SMs and TCs in addition to offering an intuitive interpretation. Hum Brain Mapp, 2011.
PLOS ONE | 2011
Qingbao Yu; Jing Sui; Srinivas Rachakonda; Hao He; William Gruner; Godfrey D. Pearlson; Kent A. Kiehl; Vince D. Calhoun
Aberrant topological properties of small-world human brain networks in patients with schizophrenia (SZ) have been documented in previous neuroimaging studies. Aberrant functional network connectivity (FNC, temporal relationships among independent component time courses) has also been found in SZ by a previous resting state functional magnetic resonance imaging (fMRI) study. However, no study has yet determined if topological properties of FNC are also altered in SZ. In this study, small-world network metrics of FNC during the resting state were examined in both healthy controls (HCs) and SZ subjects. FMRI data were obtained from 19 HCs and 19 SZ. Brain images were decomposed into independent components (ICs) by group independent component analysis (ICA). FNC maps were constructed via a partial correlation analysis of ICA time courses. A set of undirected graphs were built by thresholding the FNC maps and the small-world network metrics of these maps were evaluated. Our results demonstrated significantly altered topological properties of FNC in SZ relative to controls. In addition, topological measures of many ICs involving frontal, parietal, occipital and cerebellar areas were altered in SZ relative to controls. Specifically, topological measures of whole network and specific components in SZ were correlated with scores on the negative symptom scale of the Positive and Negative Symptom Scale (PANSS). These findings suggest that aberrant architecture of small-world brain topology in SZ consists of ICA temporally coherent brain networks.
Schizophrenia Bulletin | 2015
Cota Navin Gupta; Vince D. Calhoun; Srinivas Rachakonda; Jiayu Chen; Veena Patel; Jingyu Liu; Judith M. Segall; Barbara Franke; Marcel P. Zwiers; Alejandro Arias-Vasquez; Jan K. Buitelaar; Simon E. Fisher; Guillén Fernández; Theo G.M. van Erp; Steven G. Potkin; Judith M. Ford; Daniel H. Mathalon; Sarah McEwen; Hyo Jong Lee; Bryon A. Mueller; Douglas N. Greve; Ole A. Andreassen; Ingrid Agartz; Randy L. Gollub; Scott R. Sponheim; Stefan Ehrlich; Lei Wang; Godfrey D. Pearlson; David C. Glahn; Emma Sprooten
Analyses of gray matter concentration (GMC) deficits in patients with schizophrenia (Sz) have identified robust changes throughout the cortex. We assessed the relationships between diagnosis, overall symptom severity, and patterns of gray matter in the largest aggregated structural imaging dataset to date. We performed both source-based morphometry (SBM) and voxel-based morphometry (VBM) analyses on GMC images from 784 Sz and 936 controls (Ct) across 23 scanning sites in Europe and the United States. After correcting for age, gender, site, and diagnosis by site interactions, SBM analyses showed 9 patterns of diagnostic differences. They comprised separate cortical, subcortical, and cerebellar regions. Seven patterns showed greater GMC in Ct than Sz, while 2 (brainstem and cerebellum) showed greater GMC for Sz. The greatest GMC deficit was in a single pattern comprising regions in the superior temporal gyrus, inferior frontal gyrus, and medial frontal cortex, which replicated over analyses of data subsets. VBM analyses identified overall cortical GMC loss and one small cluster of increased GMC in Sz, which overlapped with the SBM brainstem component. We found no significant association between the component loadings and symptom severity in either analysis. This mega-analysis confirms that the commonly found GMC loss in Sz in the anterior temporal lobe, insula, and medial frontal lobe form a single, consistent spatial pattern even in such a diverse dataset. The separation of GMC loss into robust, repeatable spatial patterns across multiple datasets paves the way for the application of these methods to identify subtle genetic and clinical cohort effects.
NeuroImage | 2015
Qingbao Yu; Erik B. Erhardt; Jing Sui; Yuhui Du; Hao He; Devon R. Hjelm; Mustafa S. Çetin; Srinivas Rachakonda; Robyn L. Miller; Godfrey D. Pearlson; Vince D. Calhoun
Graph theory-based analysis has been widely employed in brain imaging studies, and altered topological properties of brain connectivity have emerged as important features of mental diseases such as schizophrenia. However, most previous studies have focused on graph metrics of stationary brain graphs, ignoring that brain connectivity exhibits fluctuations over time. Here we develop a new framework for accessing dynamic graph properties of time-varying functional brain connectivity in resting-state fMRI data and apply it to healthy controls (HCs) and patients with schizophrenia (SZs). Specifically, nodes of brain graphs are defined by intrinsic connectivity networks (ICNs) identified by group independent component analysis (ICA). Dynamic graph metrics of the time-varying brain connectivity estimated by the correlation of sliding time-windowed ICA time courses of ICNs are calculated. First- and second-level connectivity states are detected based on the correlation of nodal connectivity strength between time-varying brain graphs. Our results indicate that SZs show decreased variance in the dynamic graph metrics. Consistent with prior stationary functional brain connectivity works, graph measures of identified first-level connectivity states show lower values in SZs. In addition, more first-level connectivity states are disassociated with the second-level connectivity state which resembles the stationary connectivity pattern computed by the entire scan. Collectively, the findings provide new evidence about altered dynamic brain graphs in schizophrenia, which may underscore the abnormal brain performance in this mental illness.
Computational Intelligence and Neuroscience | 2011
Tom Eichele; Srinivas Rachakonda; Brage Brakedal; Rune Eikeland; Vince D. Calhoun
Independent component analysis (ICA) is a powerful method for source separation and has been used for decomposition of EEG, MRI, and concurrent EEG-fMRI data. ICA is not naturally suited to draw group inferences since it is a non-trivial problem to identify and order components across individuals. One solution to this problem is to create aggregate data containing observations from all subjects, estimate a single set of components and then back-reconstruct this in the individual data. Here, we describe such a group-level temporal ICA model for event related EEG. When used for EEG time series analysis, the accuracy of component detection and back-reconstruction with a group model is dependent on the degree of intra- and interindividual time and phase-locking of event related EEG processes. We illustrate this dependency in a group analysis of hybrid data consisting of three simulated event-related sources with varying degrees of latency jitter and variable topographies. Reconstruction accuracy was tested for temporal jitter 1, 2 and 3 times the FWHM of the sources for a number of algorithms. The results indicate that group ICA is adequate for decomposition of single trials with physiological jitter, and reconstructs event related sources with high accuracy.
Frontiers in Systems Neuroscience | 2011
Qingbao Yu; Jing Sui; Srinivas Rachakonda; Hao He; Godfrey D. Pearlson; Vince D. Calhoun
The functional architecture of the human brain has been extensively described in terms of complex networks characterized by efficient small-world features. Recent functional magnetic resonance imaging (fMRI) studies have found altered small-world topological properties of brain functional networks in patients with schizophrenia (SZ) during the resting state. However, little is known about the small-world properties of brain networks in the context of a task. In this study, we investigated the topological properties of human brain functional networks derived from fMRI during an auditory oddball (AOD) task. Data were obtained from 20 healthy controls and 20 SZ; A left and a right task-related network which consisted of the top activated voxels in temporal lobe of each hemisphere were analyzed separately. All voxels were detected by group independent component analysis. Connectivity of the left and right task-related networks were estimated by partial correlation analysis and thresholded to construct a set of undirected graphs. The small-worldness values were decreased in both hemispheres in SZ. In addition, SZ showed longer shortest path length and lower global efficiency only in the left task-related networks. These results suggested small-world attributes are altered during the AOD task-related networks in SZ which provided further evidences for brain dysfunction of connectivity in SZ.
Neuroinformatics | 2010
Dae Il Kim; Jing Sui; Srinivas Rachakonda; Tonya White; Dara S. Manoach; Vincent P. Clark; Beng-Choon Ho; S. Charles Schulz; Vince D. Calhoun
A number of recent studies have combined multiple experimental paradigms and modalities to find relevant biological markers for schizophrenia. In this study, we extracted fMRI features maps from the analysis of three experimental paradigms (auditory oddball, Sternberg item recognition, sensorimotor) for a large number (n = 154) of patients with schizophrenia and matched healthy controls. We used the general linear model (GLM) and independent component analysis (ICA) to extract feature maps (i.e. ICA component maps and GLM contrast maps), which were then subjected to a coefficient-constrained independent component analysis (CCICA) to identify potential neurobiological markers. A total of 29 different feature maps were extracted for each subject. Our results show a number of optimal feature combinations that reflect a set of brain regions that significantly discriminate between patients and controls in the spatial heterogeneity and amplitude of their feature signals. Spatial heterogeneity was seen in regions such as the superior/middle temporal and frontal gyri, bilateral parietal lobules, and regions of the thalamus. Most strikingly, an ICA feature representing a bilateral frontal pole network was consistently seen in the ten highest feature results when ranked on differences found in the amplitude of their feature signals. The implication of this frontal pole network and the spatial variability which spans regions comprising of bilateral frontal/temporal lobes and parietal lobules suggests that they might play a significant role in the pathophysiology of schizophrenia.
Frontiers in Neuroinformatics | 2010
Hj Bockholt; Mark Scully; William Courtney; Srinivas Rachakonda; Adam Scott; Arvind Caprihan; Jill Fries; Ravi Kalyanam; Judith M. Segall; Raul de la Garza; Susan R. Lane; Vince D. Calhoun
A neuroinformatics (NI) system is critical to brain imaging research in order to shorten the time between study conception and results. Such a NI system is required to scale well when large numbers of subjects are studied. Further, when multiple sites participate in research projects organizational issues become increasingly difficult. Optimized NI applications mitigate these problems. Additionally, NI software enables coordination across multiple studies, leveraging advantages potentially leading to exponential research discoveries. The web-based, Mind Research Network (MRN), database system has been designed and improved through our experience with 200 research studies and 250 researchers from seven different institutions. The MRN tools permit the collection, management, reporting and efficient use of large scale, heterogeneous data sources, e.g., multiple institutions, multiple principal investigators, multiple research programs and studies, and multimodal acquisitions. We have collected and analyzed data sets on thousands of research participants and have set up a framework to automatically analyze the data, thereby making efficient, practical data mining of this vast resource possible. This paper presents a comprehensive framework for capturing and analyzing heterogeneous neuroscience research data sources that has been fully optimized for end-users to perform novel data mining.
Human Brain Mapping | 2016
Jason S. Nomi; Kristafor Farrant; Eswar Damaraju; Srinivas Rachakonda; Vince D. Calhoun; Lucina Q. Uddin
The human insular cortex consists of functionally diverse subdivisions that engage during tasks ranging from interoception to cognitive control. The multiplicity of functions subserved by insular subdivisions calls for a nuanced investigation of their functional connectivity profiles. Four insula subdivisions (dorsal anterior, dAI; ventral, VI; posterior, PI; middle, MI) derived using a data‐driven approach were subjected to static‐ and dynamic functional network connectivity (s‐FNC and d‐FNC) analyses. Static‐FNC analyses replicated previous work demonstrating a cognition‐emotion‐interoception division of the insula, where the dAI is functionally connected to frontal areas, the VI to limbic areas, and the PI and MI to sensorimotor areas. Dynamic‐FNC analyses consisted of k‐means clustering of sliding windows to identify variable insula connectivity states. The d‐FNC analysis revealed that the most frequently occurring dynamic state mirrored the cognition‐emotion‐interoception division observed from the s‐FNC analysis, with less frequently occurring states showing overlapping and unique subdivision connectivity profiles. In two of the states, all subdivisions exhibited largely overlapping profiles, consisting of subcortical, sensory, motor, and frontal connections. Two other states showed the dAI exhibited a unique connectivity profile compared with other insula subdivisions. Additionally, the dAI exhibited the most variable functional connections across the s‐FNC and d‐FNC analyses, and was the only subdivision to exhibit dynamic functional connections with regions of the default mode network. These results highlight how a d‐FNC approach can capture functional dynamics masked by s‐FNC approaches, and reveal dynamic functional connections enabling the functional flexibility of the insula across time. Hum Brain Mapp 37:1770–1787, 2016.