Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Srinivas Shankara is active.

Publication


Featured researches published by Srinivas Shankara.


PLOS ONE | 2012

Human Peripheral Blood Mononuclear Cells Exhibit Heterogeneous CD52 Expression Levels and Show Differential Sensitivity to Alemtuzumab Mediated Cytolysis

Sambasiva P. Rao; Jose Sancho; Juanita Campos-Rivera; Paula Boutin; Peter Severy; Timothy E. Weeden; Srinivas Shankara; Bruce L. Roberts; Johanne Kaplan

Alemtuzumab is a monoclonal antibody that targets cell surface CD52 and is effective in depleting lymphocytes by cytolytic effects in vivo. Although the cytolytic effects of alemtuzumab are dependent on the density of CD52 antigen on cells, there is scant information regarding the expression levels of CD52 on different cell types. In this study, CD52 expression was assessed on phenotypically distinct subsets of lymphoid and myeloid cells in peripheral blood mononuclear cells (PBMCs) from normal donors. Results demonstrate that subsets of PBMCs express differing levels of CD52. Quantitative analysis showed that memory B cells and myeloid dendritic cells (mDCs) display the highest number while natural killer (NK) cells, plasmacytoid dendritic cells (pDCs) and basophils have the lowest number of CD52 molecules per cell amongst lymphoid and myeloid cell populations respectively. Results of complement dependent cytolysis (CDC) studies indicated that alemtuzumab mediated profound cytolytic effects on B and T cells with minimal effect on NK cells, basophils and pDCs, correlating with the density of CD52 on these cells. Interestingly, despite high CD52 levels, mDCs and monocytes were less susceptible to alemtuzumab-mediated CDC indicating that antigen density alone does not define susceptibility. Additional studies indicated that higher expression levels of complement inhibitory proteins (CIPs) on these cells partially contributes to their resistance to alemtuzumab mediated CDC. These results indicate that alemtuzumab is most effective in depleting cells of the adaptive immune system while leaving innate immune cells relatively intact.


Journal of Immunology | 2000

In Vitro Priming with Adenovirus/gp100 Antigen-Transduced Dendritic Cells Reveals the Epitope Specificity of HLA-A*0201-Restricted CD8+ T Cells in Patients with Melanoma

Gerald P. Linette; Srinivas Shankara; Simonne Longerich; Sixun Yang; Rhonda Doll; Charles A. Nicolette; Frederic I. Preffer; Bruce L. Roberts; Frank G. Haluska

Replication-deficient recombinant adenovirus (Ad) encoding human gp100 or MART-1 melanoma Ag was used to transduce human dendritic cells (DC) ex vivo as a model system for cancer vaccine therapy. A second generation E1/E4 region deleted Ad which harbors the CMV immediate-early promoter/enhancer and a unique E4-ORF6/pIX chimeric gene was employed as the backbone vector. We demonstrate that human monocyte-derived DC are permissive to Ad infection at multiplicity of infection between 100 and 500 and occurs independent of the coxsackie Ad receptor. Fluorescent-labeled Ad was used to assess the kinetics and distribution of viral vector within DC. Ad-transduced DC show peak transgene expression at 24–48 h and expression remains detectable for at least 7 days. DC transduced with replication-deficient Ad do not exhibit any unusual phenotypic characteristics or cytopathic effects. DC transduced with Ad2/gp100v2 can elicit tumor-specific CTL in vitro from patients bearing gp100+ metastatic melanoma. Using a panel of gp100-derived synthetic peptides, we show that Ad2/gp100v2-transduced DC elicit Ag-specific CTL that recognize only the G209 and G280 epitopes, both of which display relatively short half-lives (∼7–8 h) on the surface of HLA-A*0201+ cells. Thus, patients with metastatic melanoma are not tolerant to gp100 Ag based on the detection of CD8+ T cells specific for multiple HLA-A*0201-restricted, gp100-derived epitopes.


Molecular Cancer Therapeutics | 2006

Protein tyrosine phosphatase PRL-3 in malignant cells and endothelial cells: expression and function

Cecile Rouleau; Andre Roy; Thia St. Martin; Michael R. Dufault; Paula Boutin; Dapei Liu; Mindy Zhang; Kristin Puorro-Radzwill; Lori Rulli; Dave Reczek; Rebecca G. Bagley; Ann Byrne; William Weber; Bruce L. Roberts; Katherine W. Klinger; William Brondyk; Mariana Nacht; Steve Madden; Robert Burrier; Srinivas Shankara; Beverly A. Teicher

Protein tyrosine phosphatase PRL-3 mRNA was found highly expressed in colon cancer endothelium and metastases. We sought to associate a function with PRL-3 expression in both endothelial cells and malignant cells using in vitro models. PRL-3 mRNA levels were determined in several normal human endothelial cells exposed or unexposed to the phorbol ester phorbol 12-myristate 13-acetate (PMA) and in 27 human tumor cell lines. In endothelial cells, PRL-3 mRNA expression was increased in human umbilical vascular endothelial cells and human microvascular endothelial cells (HMVEC) exposed to PMA. An oligonucleotide microarray analysis revealed that PRL-3 was among the 10 genes with the largest increase in expression on PMA stimulation. Phenotypically, PMA-treated HMVEC showed increased invasion, tube formation, and growth factor–stimulated proliferation. A flow cytometric analysis of cell surface markers showed that PMA-treated HMVEC retained endothelial characteristics. Infection of HMVEC with an adenovirus expressing PRL-3 resulted in increased tube formation. In tumor cells, PRL-3 mRNA levels varied markedly with high expression in SKNAS neuroblastoma, MCF-7 and BT474 breast carcinoma, Hep3B hepatocellular carcinoma, and HCT116 colon carcinoma. Western blotting analysis of a subset of cell line lysates showed a positive correlation between PRL-3 mRNA and protein levels. PRL-3 was stably transfected into DLD-1 colon cancer cells. PRL-3-overexpressing DLD-1 subclones were assessed for doubling time and invasion. Although doubling time was similar among parental, empty vector, and PRL-3 subclones, invasion was increased in PRL-3-expressing subclones. In models of endogenous expression, we observed that the MCF-7 cell line, which expresses high levels of PRL-3, was more invasive than the SKBR3 cell line, which expresses low levels of PRL-3. However, the MDA-MB-231 cell line was highly invasive with low levels of PRL-3, suggesting that in some models invasion is PRL-3 independent. Transfection of a PRL-3 small interfering RNA into MCF-7 cells inhibited PRL-3 expression and cell invasion. These results indicate that PRL-3 is functional in both endothelial cells and malignant cells and further validate PRL-3 as a potentially important molecular target for anticancer therapy. [Mol Cancer Ther 2006;5(2):219–29]


Leukemia & Lymphoma | 2010

Involvement of neutrophils and natural killer cells in the anti-tumor activity of alemtuzumab in xenograft tumor models.

William Siders; Jacqueline Shields; Carrie Garron; Yanping Hu; Paula Boutin; Srinivas Shankara; William Weber; Bruce L. Roberts; Johanne Kaplan

Alemtuzumab is a recombinant humanized IgG1 monoclonal antibody directed against CD52, an antigen expressed on the surface of normal and malignant B and T lymphocytes. Alemtuzumab is approved for the treatment of B-cell chronic lymphocytic leukemia (B-CLL), but the exact mechanism by which the antibody depletes malignant lymphocytes in vivo is not clearly defined. To address this issue, the anti-tumor activity of alemtuzumab was studied in disseminated and subcutaneous xenograft tumor models. The density of CD52 target antigen on the surface of tumor cells appeared to correlate with the anti-tumor activity of alemtuzumab. Deglycosylation of alemtuzumab resulted in a loss of cytotoxicity in vitro and was found to abolish anti-tumor activity in vivo. Individual inactivation of effector mechanisms in tumor-bearing mice indicated that the protective activity of alemtuzumab in vivo was primarily dependent on ADCC mediated by neutrophils and to a lesser extent NK cells. Increasing the number of circulating neutrophils by treatment with G-CSF enhanced the anti-tumor activity of the antibody, thus providing further evidence for the involvement of neutrophils as effector cells in the activity of alemtuzumab.


Microvascular Research | 2008

Endosialin/TEM 1/CD248 is a pericyte marker of embryonic and tumor neovascularization

Rebecca G. Bagley; Nakayuki Honma; William Weber; Paula Boutin; Cecile Rouleau; Srinivas Shankara; Shiro Kataoka; Isao Ishida; Bruce L. Roberts; Beverly A. Teicher

The formation of functional, mature blood vessels depends on the interaction between endothelial cells and pericytes. Commonality exists in the processes involved in vasculature development between tissues whether healthy or diseased. Endosialin/TEM 1 is a cell membrane protein that is expressed in blood vessels during embryogenesis and tumorigenesis but not in normal mature vessels. Antibodies developed to human endosialin were used to investigate endosialin expression and function in human prenatal brain pericytes and pericytes residing in tumors. Anti-endosialin was capable of preventing pericyte tube formation in culture and inhibited migration. Brain pericytes in culture had higher levels of endosialin/TEM 1 than TEMs-2, -3, -4, -5, -7, and -8. Immunocytochemistry revealed that endosialin was present in the cytoplasmic body and in the elongated extensions essential to pericyte function. Transgenic mice engineered to express human endosialin bred on an immunocompromised background allowed the growth of human tumor xenografts. In human colon carcinoma Colo205 and HT29 xenografts grown in human endosialin-transgenic mice, endosialin expression was largely confined to NG2-expressing perivascular cells and not CD31-positive endothelial cells. Similar methods applied to human ovarian and colon tumors confirmed endosialin expression by pericytes. The data indicate that endosialin is strongly expressed by pericytes during periods of active angiogenesis during embryonic and tumor development. Anti-endosialin antibodies may have value in identifying vasculature in malignant tissues. With the appropriate agent, targeting endosialin may interfere with blood vessel growth during tumor development.


Cancer Research | 2004

Identification of a Binding Partner for the Endothelial Cell Surface Proteins TEM7 and TEM7R

Akash Nanda; Phillip Buckhaults; Steven Seaman; Nishant Agrawal; Paula Boutin; Srinivas Shankara; Mariana Nacht; Beverly A. Teicher; Jason Stampfl; Bert Vogelstein; Kenneth W. Kinzler; Brad St. Croix

Tumor endothelial marker 7 (TEM7) was recently identified as an mRNA transcript overexpressed in the blood vessels of human solid tumors. Here, we identify several new variants of TEM7, derived by alternative splicing, that are predicted to be intracellular (TEM7-I), secreted (TEM7-S), or on the cell surface membrane (TEM7-M) of tumor endothelium. Using new antibodies against the TEM7 protein, we confirmed the predicted expression of TEM7 on the cell surface and demonstrated that TEM7-M protein, like its mRNA, is overexpressed on the endothelium of various tumor types. We then used an affinity purification strategy to search for TEM7-binding proteins and identified cortactin as a protein capable of binding to the extracellular region of both TEM7 and its closest homologue, TEM7-related (TEM7R), which is also expressed in tumor endothelium. The binding domain of cortactin was mapped to a unique nine-amino acid region in its plexin-like domain. These studies establish the overexpression of TEM7 protein in tumor endothelium and provide new opportunities for the delivery of therapeutic and imaging agents to the vessels of solid tumors.


Molecular Cancer Therapeutics | 2008

Human endothelial precursor cells express tumor endothelial marker 1/endosialin/CD248

Rebecca G. Bagley; Cecile Rouleau; Thia St. Martin; Paula Boutin; William Weber; Melanie Ruzek; Nakayuki Honma; Mariana Nacht; Srinivas Shankara; Shiro Kataoka; Isao Ishida; Bruce L. Roberts; Beverly A. Teicher

Angiogenesis occurs during normal physiologic processes as well as under pathologic conditions such as tumor growth. Serial analysis of gene expression profiling revealed genes [tumor endothelial markers (TEM)] that are overexpressed in tumor endothelial cells compared with normal adult endothelial cells. Because blood vessel development of malignant tumors under certain conditions may include endothelial precursor cells (EPC) recruited from bone marrow, we investigated TEM expression in EPC. The expression of TEM1 or endosialin (CD248) and other TEM has been discovered in a population of vascular endothelial growth factor receptor 2+/CD31+/CD45−/VE-cadherin+ EPC derived from human CD133+/CD34+ cells. EPC share some properties with fully differentiated endothelial cells from normal tissue, yet reverse transcription-PCR and flow cytometry reveal that EPC express higher levels of endosialin at the molecular and protein levels. The elevated expression of endosialin in EPC versus mature endothelial cells suggests that endosialin is involved in the earlier stages of tumor angiogenesis. Anti-endosialin antibodies inhibited EPC migration and tube formation in vitro. In vivo, immunohistochemistry indicated that human EPC continued to express endosialin protein in a Matrigel plug angiogenesis assay established in nude mice. Anti-endosialin antibodies delivered systemically at 25 mg/kg were also able to inhibit circulating murine EPC in nude mice bearing s.c. SKNAS tumors. EPC and bone marrow–derived cells have been shown previously to incorporate into malignant blood vessels in some instances, yet they remain controversial in the field. The data presented here on endothelial genes that are up-regulated in tumor vasculature and in EPC support the hypothesis that the angiogenesis process in cancer can involve EPC. [Mol Cancer Ther 2008;7(8):2536–46]


Immunology | 2014

Impact of alemtuzumab treatment on the survival and function of human regulatory T cells in vitro

Evis Havari; Michael Turner; Juanita Campos-Rivera; Srinivas Shankara; Tri-Hung Nguyen; Bruce L. Roberts; William Siders; Johanne Kaplan

Alemtuzumab is a humanized monoclonal antibody specific for the CD52 protein present at high levels on the surface of B and T lymphocytes. In clinical trials, alemtuzumab has shown a clinical benefit superior to that of interferon‐β in relapsing–remitting multiple sclerosis patients. Treatment with alemtuzumab leads to the depletion of circulating lymphocytes followed by a repopulation process characterized by alterations in the number, proportions and properties of lymphocyte subsets. Of particular interest, an increase in the percentage of T cells with a regulatory phenotype (Treg cells) has been observed in multiple sclerosis patients after alemtuzumab. Since Treg cells play an important role in the control of autoimmune responses, the effect of alemtuzumab on Treg cells was further studied in vitro. Alemtuzumab effectively mediated complement‐dependent cytolysis of human T lymphocytes and the remaining population was enriched in T cells with a regulatory phenotype. The alemtuzumab‐exposed T cells displayed functional regulatory characteristics including anergy to stimulation with allogeneic dendritic cells and ability to suppress the allogeneic response of autologous T cells. Consistent with the observed increase in Treg cell frequency, the CD25hi T‐cell population was necessary for the suppressive activity of alemtuzumab‐exposed T cells. The mechanism of this suppression was found to be dependent on both cell–cell contact and interleukin‐2 consumption. These findings suggest that an alemtuzumab‐mediated increase in the proportion of Treg cells may play a role in promoting the long‐term efficacy of alemtuzumab in patients with multiple sclerosis.


Journal of Immunological Methods | 2002

Quantitative real-time RT-PCR as a method for monitoring T lymphocyte reactivity to full-length tyrosinase protein in vaccinated melanoma patients

Franck Housseau; Kimberly R. Lindsey; Samuel D. Oberholtzer; Monica Gonzales; Paula Boutin; Anitha Moorthy; Srinivas Shankara; Bruce L. Roberts; Suzanne L. Topalian

The major goal of therapeutic cancer vaccine trials is to mediate tumor regression. However, it is critically important to devise in vitro immunological assays that correlate with clinical outcome, for use as surrogate markers of vaccine efficacy. To date, clinical emphasis has been placed on peptide vaccines, but trends towards the use of more complex immunogens such as whole proteins require the development of efficient and sensitive methods for monitoring their immunological effects. In the context of a vaccination trial using full-length tyrosinase (Ty) to immunize patients with metastatic melanoma, a monitoring technique was developed in which autologous dendritic cells (DC) infected with a recombinant adenovirus encoding the Ty protein were used to assess the Ty-specific reactivity of fresh peripheral blood lymphocytes (PBL) collected from patients at different intervals during therapy. Quantitative real-time RT-PCR (qRT-PCR) was used to measure the production of cytokine mRNA by T cells following a 2.5-h incubation with Ty-expressing DC. Two out of ten patients studied demonstrated Ty protein-specific reactivity that increased during and after the period of vaccination. While one of these patients also reacted to an HLA-A1-compatible Ty peptide, the second did not recognize any of the known Ty epitopes, highlighting the importance of this technique for monitoring the effects of complex vaccines.


International Journal of Oncology | 2012

Expression of TMPRSS4 in non-small cell lung cancer and its modulation by hypoxia

Tri-Hung Nguyen; William Weber; Evis Havari; Timothy D. Connors; Rebecca G. Bagley; Rajashree P. McLaren; Prashant R. Nambiar; Stephen L. Madden; Beverly A. Teicher; Bruce L. Roberts; Johanne Kaplan; Srinivas Shankara

Overexpression of TMPRSS4, a cell surface-associated transmembrane serine protease, has been reported in pancreatic, colorectal and thyroid cancers, and has been implicated in tumor cell migration and metastasis. Few reports have investigated both TMPRSS4 gene expression levels and the protein products. In this study, quantitative RT-PCR and protein staining were used to assess TMPRSS4 expression in primary non-small cell lung carcinoma (NSCLC) tissues and in lung tumor cell lines. At the transcriptional level, TMPRSS4 message was significantly elevated in the majority of human squamous cell and adenocarcinomas compared with normal lung tissues. Staining of over 100 NSCLC primary tumor and normal specimens with rabbit polyclonal anti-TMPRSS4 antibodies confirmed expression at the protein level in both squamous cell and adenocarcinomas with little or no staining in normal lung tissues. Human lung tumor cell lines expressed varying levels of TMPRSS4 mRNA in vitro. Interestingly, tumor cell lines with high levels of TMPRSS4 mRNA failed to show detectable TMPRSS4 protein by either immunoblotting or flow cytometry. However, protein levels were increased under hypoxic culture conditions suggesting that hypoxia within the tumor microenvironment may upregulate TMPRSS4 protein expression in vivo. This was supported by the observation of TMPRSS4 protein in xenograft tumors derived from the cell lines. In addition, staining of human squamous cell carcinoma samples for carbonic anhydrase IX (CAIX), a hypoxia marker, showed TMPRSS4 positive cells adjacent to CAIX positive cells. Overall, these results indicate that the cancer-associated TMPRSS4 protein is overexpressed in NSCLC and may represent a potential therapeutic target.

Collaboration


Dive into the Srinivas Shankara's collaboration.

Researchain Logo
Decentralizing Knowledge