Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Srinivas V. Koduru is active.

Publication


Featured researches published by Srinivas V. Koduru.


Molecular Cancer Therapeutics | 2010

Notch-1 inhibition by Withaferin-A: a therapeutic target against colon carcinogenesis.

Srinivas V. Koduru; Raj Kumar; Sowmyalakshmi Srinivasan; Mark B. Evers; Chendil Damodaran

Notch signaling plays a crucial role in the development of colon cancer; targeting the Notch pathway may sensitize colon cancers to various adjuvant agents. The focus of our current study is to identify natural compounds that target Notch signaling and that might be beneficial for the prevention and treatment of colon cancer. Withaferin-A (WA) is a bioactive compound derived from Withania somnifera, which inhibits Notch-1 signaling and downregulates prosurvival pathways, such as Akt/NF-κB/Bcl-2, in three colon cancer cell lines (HCT-116, SW-480, and SW-620). In addition, WA downregulated the expression of mammalian target of rapamycin signaling components, pS6K and p4E-BP1, and activated c-Jun-NH2-kinase–mediated apoptosis in colon cancer cells. We also established the molecular link between Notch/Akt/mammalian target of rapamycin signaling by complementary approaches (i.e., overexpression of Notch-1 or inhibition of Notch-1 by small interfering RNA). Our results suggest that WA inhibits Notch-mediated prosurvival signaling, which facilitates c-Jun-NH2-kinase–mediated apoptosis in colon cancer cell lines. These results underscore the anticancer activity of WA, which exhibits potential for further development for targeted chemotherapy and/or chemoprevention strategies in the context of colon cancer. Mol Cancer Ther; 9(1); 202–210


International Journal of Cancer | 2009

Diosgenin targets Akt-mediated prosurvival signaling in human breast cancer cells.

Sowmyalakshmi Srinivasan; Srinivas V. Koduru; Raj Kumar; Guhan Venguswamy; Natasha Kyprianou; Chendil Damodaran

In recent years, Akt signaling has gained recognition for its functional role in more aggressive, therapy‐resistant malignancies. As it is frequently constitutively active in cancer cells, several drugs are being investigated for their ability to inhibit Akt signaling. The purpose of this study is to determine effect of diosgenin (fenugreek), a dietary compound on Akt signaling and its downstream targets on estrogen receptor positive (ER+) and estrogen receptor negative (ER−) breast cancer (BCa) cells. Diosgenin inhibits pAkt expression and Akt kinase activity without affecting PI3 kinase levels, resulting in the inhibition of its downstream targets, NF‐κB, Bcl‐2, survivin and XIAP. The Raf/MEK/ERK pathway, another functional downstream target of Akt, was inhibited by diosgenin in ER+ but not in ER− BCa cells. Additionally, we found that diosgenin caused G1 cell cycle arrest by downregulating cyclin D1, cdk‐2 and cdk‐4 expression in both ER+ and ER− BCa cells resulting in the inhibition of cell proliferation and induction of apoptosis. Interestingly, no significant toxicity was seen in the normal breast epithelial cells (MCF‐10A) following treatment with diosgenin. Additionally, in vivo tumor studies indicate diosgenin significantly inhibits tumor growth in both MCF‐7 and MDA‐231 xenografts in nude mice. Thus, these results suggest that diosgenin might prove to be a potential chemotherapeutic agent for the treatment of BCa.


Journal of Hepatology | 2016

A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer.

Amon Asgharpour; Sophie C. Cazanave; Tommy Pacana; Mulugeta Seneshaw; Robert Vincent; B. Banini; Divya P. Kumar; Kalyani Daita; Hae-Ki Min; Faridoddin Mirshahi; Pierre Bedossa; Xiaochen Sun; Yujin Hoshida; Srinivas V. Koduru; Daniel Contaifer; Urszula Osinska Warncke; Dayanjan S. Wijesinghe; Arun J. Sanyal

Background & Aims The lack of a preclinical model of progressive non-alcoholic steatohepatitis (NASH) that recapitulates human disease is a barrier to therapeutic development. Methods A stable isogenic cross between C57BL/6J (B6) and 129S1/SvImJ (S129) mice were fed a high fat diet with ad libitum consumption of glucose and fructose in physiologically relevant concentrations and compared to mice fed a chow diet and also to both parent strains. Results Following initiation of the obesogenic diet, B6/129 mice developed obesity, insulin resistance, hypertriglyceridemia and increased LDL-cholesterol. They sequentially also developed steatosis (4–8 weeks), steatohepatitis (16–24 weeks), progressive fibrosis (16 weeks onwards) and spontaneous hepatocellular cancer (HCC). There was a strong concordance between the pattern of pathway activation at a transcriptomic level between humans and mice with similar histological phenotypes (FDR 0.02 for early and 0.08 for late time points). Lipogenic, inflammatory and apoptotic signaling pathways activated in human NASH were also activated in these mice. The HCC gene signature resembled the S1 and S2 human subclasses of HCC (FDR 0.01 for both). Only the B6/129 mouse but not the parent strains recapitulated all of these aspects of human NAFLD. Conclusions We here describe a diet-induced animal model of non-alcoholic fatty liver disease (DIAMOND) that recapitulates the key physiological, metabolic, histologic, transcriptomic and cell-signaling changes seen in humans with progressive NASH. Lay summary We have developed a diet-induced mouse model of non-alcoholic steatohepatitis (NASH) and hepatic cancers in a cross between two mouse strains (129S1/SvImJ and C57Bl/6J). This model mimics all the physiological, metabolic, histological, transcriptomic gene signature and clinical endpoints of human NASH and can facilitate preclinical development of therapeutic targets for NASH.


Cancer Prevention Research | 2009

Psoralidin, an Herbal Molecule, Inhibits Phosphatidylinositol 3-Kinase–Mediated Akt Signaling in Androgen-Independent Prostate Cancer Cells

Raj Kumar; Sowmyalakshmi Srinivasan; Srinivas V. Koduru; Pallab Pahari; Jürgen Rohr; Natasha Kyprianou; Chendil Damodaran

The protein kinase Akt plays an important role in cell proliferation and survival in many cancers, including prostate cancer. Due to its kinase activity, it serves as a molecular conduit for inhibiting apoptosis and promoting angiogenesis in most cell types. In most of the prostate tumors, Akt signaling is constitutively activated due to the deletion or mutation of the tumor suppressor PTEN, which negatively regulates phosphatidylinositol 3-kinase through lipid phosphatase activity. Recently, we identified a natural compound, psoralidin, which inhibits Akt phosphorylation, and its consequent activation in androgen-independent prostate cancer (AIPC) cells. Furthermore, ectopic expression of Akt renders AIPC cells resistant to chemotherapy; however, psoralidin overcomes Akt-mediated resistance and induces apoptosis in AIPC cells. While dissecting the molecular events, both upstream and downstream of Akt, we found that psoralidin inhibits phosphatidylinositol 3-kinase activation and transcriptionally represses the activation of nuclear factor-κB and its target genes (Bcl-2, Survivin, and Bcl-xL, etc.), which results in the inhibition of cell viability and induction of apoptosis in PC-3 and DU-145 cells. Interestingly, psoralidin selectively targets cancer cells without causing any toxicity to normal prostate epithelial cells. In vivo xenograft assays substantiate these in vitro findings and show that psoralidin inhibits prostate tumor growth in nude mice. Our findings are of therapeutic significance in the management of prostate cancer patients with advanced or metastatic disease, as they provide new directions for the development of a phytochemical-based platform for prevention and treatment strategies for AIPC.


Apoptosis | 2010

Inhibiting TNF-mediated signaling: a novel therapeutic paradigm for androgen independent prostate cancer.

Sowmyalakshmi Srinivasan; Raj Kumar; Srinivas V. Koduru; Aaditya Chandramouli; Chendil Damodaran

The tumor necrosis factor (TNF) receptor super family comprises of members that induce two distinct signaling cascades, leading to either cell survival or apoptosis. However, in prostate cancer (PCa), TNF-mediated prosurvival signaling is the predominant pathway that leads to cell survival and resistance to therapy. Although inhibition of TNF signaling by pharmacological agents or monoclonal antibodies has gained importance in the field of cancer therapy, toxicity to normal cells has impaired their extensive use for cancer treatment. We previously identified a natural, nontoxic compound psoralidin that inhibited viability and induced apoptosis in androgen independent prostate cancer (AIPC) cells. Thus, the goal of our study is to investigate whether psoralidin inhibits TNF-mediated prosurvival signaling in AIPC cells. Our results suggest that psoralidin inhibits constitutive and TNF-induced expression of TNF-α and its downstream prosurvival signaling molecules such as NF-κB and Bcl-2 in AIPC cells. On the other hand, psoralidin simultaneously induces the death receptor (DR)-mediated apoptotic signaling eventually causing the activation of caspase cascade and resultant induction of apoptosis. Oral administration of psoralidin inhibits expression of TNF-α and NF-κB/p65 in tumor sections, resulting in tumor regression in PC-3 xenografts. Our results suggest that psoralidin inhibits TNF-mediated survival signaling in AIPC and thus is a potent therapeutic agent for prostate cancer.


Annals of Surgery | 2017

Transplantation of Bioprinted Tissues and Organs: Technical and Clinical Challenges and Future Perspectives

Dino J. Ravnic; Ashley N. Leberfinger; Srinivas V. Koduru; Monika Hospodiuk; Kazim K. Moncal; Pallab Datta; Madhuri Dey; Elias Rizk; Ibrahim T. Ozbolat

&NA; Three-dimensional (3D) bioprinting is a revolutionary technology in building living tissues and organs with precise anatomic control and cellular composition. Despite the great progress in bioprinting research, there has yet to be any clinical translation due to current limitations in building human-scale constructs, which are vascularized and readily implantable. In this article, we review the current limitations and challenges in 3D bioprinting, including in situ techniques, which are one of several clinical translational models to facilitate the application of this technology from bench to bedside. A detailed discussion is made on the technical barriers in the fabrication of scalable constructs that are vascularized, autologous, functional, implantable, cost-effective, and ethically feasible. Clinical considerations for implantable bioprinted tissues are further expounded toward the correction of end-stage organ dysfunction and composite tissue deficits.


Journal of Genomics | 2017

Exploration of small RNA-seq data for small non-coding RNAs in Human Colorectal Cancer

Srinivas V. Koduru; Amit K. Tiwari; Sprague W. Hazard; Milind Mahajan; Dino J. Ravnic

Background: Improved healthcare and recent breakthroughs in technology have substantially reduced cancer mortality rates worldwide. Recent advancements in next-generation sequencing (NGS) have allowed genomic analysis of the human transcriptome. Now, using NGS we can further look into small non-coding regions of RNAs (sncRNAs) such as microRNAs (miRNAs), Piwi-interacting-RNAs (piRNAs), long non-coding RNAs (lncRNAs), and small nuclear/nucleolar RNAs (sn/snoRNAs) among others. Recent studies looking at sncRNAs indicate their role in important biological processes such as cancer progression and predict their role as biomarkers for disease diagnosis, prognosis, and therapy. Results: In the present study, we data mined publically available small RNA sequencing data from colorectal tissue samples of eight matched patients (benign, tumor, and metastasis) and remapped the data for various small RNA annotations. We identified aberrant expression of 13 miRNAs in tumor and metastasis specimens [tumor vs benign group (19 miRNAs) and metastasis vs benign group (38 miRNAs)] of which five were upregulated, and eight were downregulated, during disease progression. Pathway analysis of aberrantly expressed miRNAs showed that the majority of miRNAs involved in colon cancer were also involved in other cancers. Analysis of piRNAs revealed six to be over-expressed in the tumor vs benign cohort and 24 in the metastasis vs benign group. Only two piRNAs were shared between the two cohorts. Examining other types of small RNAs [sn/snoRNAs, mt_rRNA, miscRNA, nonsense mediated decay (NMD), and rRNAs] identified 15 sncRNAs in the tumor vs benign group and 104 in the metastasis vs benign group, with only four others being commonly expressed. Conclusion: In summary, our comprehensive analysis on publicly available small RNA-seq data identified multiple differentially expressed sncRNAs during colorectal cancer progression at different stages compared to normal colon tissue. We speculate that deciphering and validating the roles of sncRNAs may prove useful in colorectal cancer prognosis, diagnosis, and therapy.


BMC Cancer | 2009

Identification of a potent herbal molecule for the treatment of breast cancer.

Srinivas V. Koduru; Srinivasan Sowmyalakshmi; Raj Kumar; Rohini Gomathinayagam; Jürgen Rohr; Chendil Damodaran

BackgroundBreast cancer (BCa)-related mortality still remains the second leading cause of cancer-related deaths worldwide. Patients with BCa have increasingly shown resistance and high toxicity to current chemotherapeutic drugs for which identification of novel targeted therapies are required.MethodsTo determine the effect of PDBD on BCa cells, estrogen-receptor positive (ER+)-MCF-7 and estrogen-receptor negative (ER-)-MDA 231 cells were treated with PDBD and the cell viability, apoptotic, cell cycle, Western blot and Promoter assays were performed.ResultsPDBD inhibits cell viability of ER+ and ER- BCa cells by inducing apoptosis without causing significant toxicity in normal breast epithelial cells. While dissecting the mechanism of action of PDBD on BCa, we found that PDBD inhibits Akt signaling and its downstream targets such as NF-κB activation, IAP proteins and Bcl-2 expression. On the other hand, activation of JNK/p38 MAPK-mediated pro-apoptotic signaling was observed in both ER+ and ER- BCa cells.ConclusionThese findings suggest that PDBD may have wide therapeutic application in the treatment of BCa.


Journal of Cancer | 2017

A comprehensive NGS data analysis of differentially regulated miRNAs, piRNAs, lncRNas and sn/snoRNAs in triple negative breast cancer

Srinivas V. Koduru; Amit K. Tiwari; Ashley N. Leberfinger; Sprague W. Hazard; Yuka Imamura Kawasawa; Milind Mahajan; Dino J. Ravnic

Cancer is the second leading cause of death in the United States and is a major public health concern worldwide. Basic, clinical and epidemiological research is leading to improved cancer detection, prevention, and outcomes. Recent technological advances have allowed unbiased and comprehensive screening of genome-wide gene expression. Small non-coding RNAs (sncRNAs) have been shown to play an important role in biological processes and could serve as a diagnostic, prognostic and therapeutic biomarker for specific diseases. Recent findings have begun to reveal and enhance our understanding of the complex architecture of sncRNA expression including miRNAs, piRNAs, lncRNAs, sn/snoRNAs and their relationships with biological systems. We used publicly available small RNA sequencing data that was derived from 24 triple negative breast cancers (TNBC) and 14 adjacent normal tissue samples to remap various types of sncRNAs. We found a total of 55 miRNAs were aberrantly expressed (p<0.005) in TNBC samples (8 miRNAs upregulated; 47 downregulated) compared to adjacent normal tissues whereas the original study reported only 25 novel miRs. In this study, we used pathway analysis of differentially expressed miRNAs which revealed TGF-beta signaling pathways to be profoundly affected in the TNBC samples. Furthermore, our comprehensive re-mapping strategy allowed us to discover a number of other differentially expressed sncRNAs including piRNAs, lncRNAs, sn/snoRNAs, rRNAs, miscRNAs and nonsense-mediated decay RNAs. We believe that our sncRNA analysis workflow is extremely comprehensive and suitable for discovery of novel sncRNAs changes, which may lead to the development of innovative diagnostic and therapeutic tools for TNBC.


Current Surgery Reports | 2017

Adipose-Derived Stem Cells in Peripheral Nerve Regeneration

Ashley N. Leberfinger; Dino J. Ravnic; Russell Payne; Elias Rizk; Srinivas V. Koduru; Sprague W. Hazard

Purpose of the ReviewPeripheral nerve injuries are common, debilitating, and costly. The human body’s innate regenerative capacity is slow, and nerves are often misguided. The purpose of this article is to review a specific cellular, regenerative engineering technique that holds promise for the treatment of peripheral nerve injuries.Recent FindingsOver the past several decades, research has focused on the utilization of stem cells for peripheral nerve repair. More recently, stem cells collected from adipose tissue (adipose-derived stem cells or ADSCs) have gained traction due to their relative ease of collection and differentiation potential. Both undifferentiated and Schwann cell-like differentiated ADSCs have been used to seed conduits with variable results.SummaryTechnical and ethical issues surrounding stem cells’ self-expansion potential and genetic makeup exist. Ultimately, randomized control trials and FDA approval will be required before widespread clinical translation in the US is realized.

Collaboration


Dive into the Srinivas V. Koduru's collaboration.

Top Co-Authors

Avatar

Dino J. Ravnic

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raj Kumar

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashley N. Leberfinger

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sprague W. Hazard

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Milind Mahajan

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Arun J. Sanyal

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge