Srinivas Veerla
Lund University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Srinivas Veerla.
Clinical Cancer Research | 2012
Gottfrid Sjödahl; Martin Lauss; Kristina Lövgren; Gunilla Chebil; Sigurdur Gudjonsson; Srinivas Veerla; Oliver Hultman Patschan; Mattias Aine; Mårten Fernö; Markus Ringnér; Wiking Månsson; Fredrik Liedberg; David Lindgren; Mattias Höglund
Purpose: Even though urothelial cancer is the fourth most common tumor type among males, progress in treatment has been scarce. A problem in day-to-day clinical practice is that precise assessment of individual tumors is still fairly uncertain; consequently efforts have been undertaken to complement tumor evaluation with molecular biomarkers. An extension of this approach would be to base tumor classification primarily on molecular features. Here, we present a molecular taxonomy for urothelial carcinoma based on integrated genomics. Experimental Design: We use gene expression profiles from 308 tumor cases to define five major urothelial carcinoma subtypes: urobasal A, genomically unstable, urobasal B, squamous cell carcinoma like, and an infiltrated class of tumors. Tumor subtypes were validated in three independent publically available data sets. The expression of 11 key genes was validated at the protein level by immunohistochemistry. Results: The subtypes show distinct clinical outcomes and differ with respect to expression of cell-cycle genes, receptor tyrosine kinases particularly FGFR3, ERBB2, and EGFR, cytokeratins, and cell adhesion genes, as well as with respect to FGFR3, PIK3CA, and TP53 mutation frequency. The molecular subtypes cut across pathologic classification, and class-defining gene signatures show coordinated expression irrespective of pathologic stage and grade, suggesting the molecular phenotypes as intrinsic properties of the tumors. Available data indicate that susceptibility to specific drugs is more likely to be associated with the molecular stratification than with pathologic classification. Conclusions: We anticipate that the molecular taxonomy will be useful in future clinical investigations. Clin Cancer Res; 18(12); 3377–86. ©2012 AACR.
International Journal of Cancer | 2009
Srinivas Veerla; David Lindgren; Anders Kvist; Attila Frigyesi; Johan Staaf; Helena Persson; Fredrik Liedberg; Gunilla Chebil; Sigurdur Gudjonsson; Åke Borg; Wiking Månsson; Carlos Rovira; Mattias Höglund
We analyzed 34 cases of urothelial carcinomas by miRNA, mRNA and genomic profiling. Unsupervised hierarchical clustering using expression information for 300 miRNAs produced 3 major clusters of tumors corresponding to Ta, T1 and T2‐T3 tumors, respectively. A subsequent SAM analysis identified 51 miRNAs that discriminated the 3 pathological subtypes. A score based on the expression levels of the 51 miRNAs, identified muscle invasive tumors with high precision and sensitivity. MiRNAs showing high expression in muscle invasive tumors included miR‐222 and miR‐125b and in Ta tumors miR‐10a. A miRNA signature for FGFR3 mutated cases was also identified with miR‐7 as an important member. MiR‐31, located in 9p21, was found to be homozygously deleted in 3 cases and miR‐452 and miR‐452* were shown to be over expressed in node positive tumors. In addition, these latter miRNAs were shown to be excellent prognostic markers for death by disease as outcome. The presented data shows that pathological subtypes of urothelial carcinoma show distinct miRNA gene expression signatures.
Cancer Research | 2010
David Lindgren; Attila Frigyesi; Sigurdur Gudjonsson; Gottfrid Sjödahl; Christer Halldén; Gunilla Chebil; Srinivas Veerla; Tobias Rydén; Wiking Månsson; Fredrik Liedberg; Mattias Höglund
In the present investigation, we sought to refine the classification of urothelial carcinoma by combining information on gene expression, genomic, and gene mutation levels. For these purposes, we performed gene expression analysis of 144 carcinomas, and whole genome array-CGH analysis and mutation analyses of FGFR3, PIK3CA, KRAS, HRAS, NRAS, TP53, CDKN2A, and TSC1 in 103 of these cases. Hierarchical cluster analysis identified two intrinsic molecular subtypes, MS1 and MS2, which were validated and defined by the same set of genes in three independent bladder cancer data sets. The two subtypes differed with respect to gene expression and mutation profiles, as well as with the level of genomic instability. The data show that genomic instability was the most distinguishing genomic feature of MS2 tumors, and that this trait was not dependent on TP53/MDM2 alterations. By combining molecular and pathologic data, it was possible to distinguish two molecular subtypes of T(a) and T(1) tumors, respectively. In addition, we define gene signatures validated in two independent data sets that classify urothelial carcinoma into low-grade (G(1)/G(2)) and high-grade (G(3)) tumors as well as non-muscle and muscle-invasive tumors with high precisions and sensitivities, suggesting molecular grading as a relevant complement to standard pathologic grading. We also present a gene expression signature with independent prognostic effect on metastasis and disease-specific survival. We conclude that the combination of molecular and histopathologic classification systems might provide a strong improvement for bladder cancer classification and produce new insights into the development of this tumor type.
Human Molecular Genetics | 2009
Josef Davidsson; Henrik Lilljebjörn; Anna Andersson; Srinivas Veerla; Jesper Heldrup; Mikael Behrendtz; Thoas Fioretos; Bertil Johansson
Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy, with high hyperdiploidy [51-67 chromosomes] and the t(12;21)(p13;q22) [ETV6/RUNX1 fusion] representing the most frequent abnormalities. Although these arise in utero, there is long latency before overt ALL, showing that additional changes are needed. Gene dysregulation through hypermethylation may be such an event; however, this has not previously been investigated in a detailed fashion. We performed genome-wide methylation profiling using bacterial artificial chromosome arrays and promoter-specific analyses of high hyperdiploid and ETV6/RUNX1-positive ALLs. In addition, global gene expression analyses were performed to identify associated expression patterns. Unsupervised cluster and principal component analyses of the chromosome-wide methylome profiles could successfully subgroup the two genetic ALL types. Analysis of all currently known promoter-specific CpG islands demonstrated that several B-cell- and neoplasia-associated genes were hypermethylated and underexpressed, indicating that aberrant methylation plays a significant leukemogenic role. Interestingly, methylation hotspots were associated with chromosome bands predicted to harbor imprinted genes and the tri-/tetrasomic chromosomes in the high hyperdiploid ALLs were less methylated than their disomic counterparts. Decreased methylation of gained chromosomes is a previously unknown phenomenon that may have ramifications not only for the pathogenesis of high hyperdiploid ALL but also for other disorders with acquired or constitutional numerical chromosome anomalies.
BMC Medical Genomics | 2008
Markus Heidenblad; David Lindgren; Tord Jonson; Fredrik Liedberg; Srinivas Veerla; Gunilla Chebil; Sigurdur Gudjonsson; Åke Borg; Wiking Månsson; Mattias Höglund
BackgroundUrothelial carcinoma (UC) is characterized by nonrandom chromosomal aberrations, varying from one or a few changes in early-stage and low-grade tumors, to highly rearranged karyotypes in muscle-invasive lesions. Recent array-CGH analyses have shed further light on the genomic changes underlying the neoplastic development of UC, and have facilitated the molecular delineation amplified and deleted regions to the level of specific candidate genes. In the present investigation we combine detailed genomic information with expression information to identify putative target genes for genomic amplifications.MethodsWe analyzed 38 urothelial carcinomas by whole-genome tiling resolution array-CGH and high density expression profiling to identify putative target genes in common genomic amplifications. When necessary expression profiling was complemented with Q-PCR of individual genes.ResultsThree genomic segments were frequently and exclusively amplified in high grade tumors; 1q23, 6p22 and 8q22, respectively. Detailed mapping of the 1q23 segment showed a heterogeneous amplification pattern and no obvious commonly amplified region. The 6p22 amplicon was defined by a 1.8 Mb core region present in all amplifications, flanked both distally and proximally by segments amplified to a lesser extent. By combining genomic profiles with expression profiles we could show that amplification of E2F3, CDKAL1, SOX4, and MBOAT1 as well as NUP153, AOF1, FAM8A1 and DEK in 6p22 was associated with increased gene expression. Amplification of the 8q22 segment was primarily associated with YWHAZ (14-3-3-zeta) and POLR2K over expression. The possible importance of the YWHA genes in the development of urothelial carcinomas was supported by another recurrent amplicon paralogous to 8q22, in 2p25, where increased copy numbers lead to enhanced expression of YWHAQ (14-3-3-theta). Homozygous deletions were identified at 10 different genomic locations, most frequently affecting CDKN2A/CDKN2B in 9p21 (32%). Notably, the latter occurred mutually exclusive with 6p22 amplifications.ConclusionThe presented data indicates 6p22 as a composite amplicon with more than one possible target gene. The data also suggests that amplification of 6p22 and homozygous deletions of 9p21 may have complementary roles. Furthermore, the analysis of paralogous regions that showed genomic amplification indicated altered expression of YWHA (14-3-3) genes as important events in the development of UC.
Cancer Research | 2013
Cristina Peña; María Virtudes Céspedes; Maja Bradic Lindh; Sara Kiflemariam; Artur Mezheyeuski; Per-Henrik Edqvist; Christina Hägglöf; Helgi Birgisson; Linda Bojmar; Karin Jirström; Per Sandström; Eleonor Olsson; Srinivas Veerla; Alberto Gallardo; Tobias Sjöblom; Andrew C. Chang; Roger R. Reddel; Ramon Mangues; Martin Augsten; Arne Östman
Platelet-derived growth factor (PDGF) receptor signaling is a major functional determinant of cancer-associated fibroblasts (CAF). Elevated expression of PDGF receptors on stromal CAFs is associated with metastasis and poor prognosis, but mechanism(s) that underlie these connections are not understood. Here, we report the identification of the secreted glycoprotein stanniocalcin-1 (STC1) as a mediator of metastasis by PDGF receptor function in the setting of colorectal cancer. PDGF-stimulated fibroblasts increased migration and invasion of cocultured colorectal cancer cells in an STC1-dependent manner. Analyses of human colorectal cancers revealed significant associations between stromal PDGF receptor and STC1 expression. In an orthotopic mouse model of colorectal cancer, tumors formed in the presence of STC1-deficient fibroblasts displayed reduced intravasation of tumor cells along with fewer and smaller distant metastases formed. Our results reveal a mechanistic basis for understanding the contribution of PDGF-activated CAFs to cancer metastasis.
Epigenetics | 2012
Martin Lauss; Mattias Aine; Gottfrid Sjödahl; Srinivas Veerla; Oliver Hultman Patschan; Sigurdur Gudjonsson; Gunilla Chebil; Kristina Lövgren; Mårten Fernö; Wiking Månsson; Fredrik Liedberg; Markus Ringnér; David Lindgren; Mattias Höglund
We assessed DNA methylation and copy number status of 27,000 CpGs in 149 urothelial carcinomas and integrated the findings with gene expression and mutation data. Methylation was associated with gene expression for 1,332 CpGs, of which 26% showed positive correlation with expression, i.e., high methylation and high gene expression levels. These positively correlated CpGs were part of specific transcription factor binding sites, such as sites for MYC and CREBP1, or located in gene bodies. Furthermore, we found genes with copy number gains, low expression and high methylation levels, revealing an association between methylation and copy number levels. This phenomenon was typically observed for developmental genes, such as HOX genes, and tumor suppressor genes. In contrast, we also identified genes with copy number gains, high expression and low methylation levels. This was for instance observed for some keratin genes. Tumor cases could be grouped into four subgroups, termed epitypes, by their DNA methylation profiles. One epitype was influenced by the presence of infiltrating immune cells, two epitypes were mainly composed of non-muscle invasive tumors, and the remaining epitype of muscle invasive tumors. The polycomb complex protein EZH2 that blocks differentiation in embryonic stem cells showed increased expression both at the mRNA and protein levels in the muscle invasive epitype, together with methylation of polycomb target genes and HOX genes. Our data highlights HOX gene silencing and EZH2 expression as mechanisms to promote a more undifferentiated and aggressive state in UC.
Clinical Cancer Research | 2011
Emely Möller; Jason L. Hornick; Linda Magnusson; Srinivas Veerla; Henryk A. Domanski; Fredrik Mertens
Purpose: Low-grade fibromyxoid sarcoma (LGFMS) is typically characterized by the specific translocation t(7;16)(q33;p11) and the corresponding fusion gene FUS-CREB3L2. The present study aimed to extract LGFMS-specific, and putatively FUS-CREB3L2–dependent, gene expression patterns to learn more about the pathogenesis of this tumor. Experimental Design: We carried out single nucleotide polymorphism (SNP) and global gene expression array analyses, and/or immunohistochemical (IHC) analyses on 24 LGFMS tumor biopsies. Tumor types that are important differential diagnoses to LGFMS were included as comparison in the gene and protein expression analyses. In addition, cells that stably expressed FUS-CREB3L2 were analyzed with gene expression array and the influence of FUS-CREB3L2 on gene expression was investigated in vitro. Results: The SNP array analysis detected recurrent microdeletions in association with the t(7;16) chromosomal breakpoints and gain of 7q in cases with ring chromosomes. Gene expression analysis clearly distinguished LGFMS from morphologically similar tumors and MUC4 was identified as a potential diagnostic marker for LGFMS by gene expression and IHC analysis. FOXL1 was identified as the top upregulated gene in LGFMS and CD24 was upregulated in both LGFMS tumors and FUS-CREB3L2 expressing cells. FUS-CREB3L2 was capable of activating transcription from CD24 regulatory sequences in luciferase assays, suggesting an important role for the upregulation of this gene in LGFMS. Conclusions: The gene expression profile of LGFMS is distinct from that of soft tissue tumors with similar morphology. The data could be used to identify a potential diagnostic marker for LGFMS and to identify possible FUS-CREB3L2 regulated genes. Clin Cancer Res; 17(9); 2646–56. ©2011 AACR.
Genes, Chromosomes and Cancer | 2008
Srinivas Veerla; Ioannis Panagopoulos; Yuesheng Jin; David Lindgren; Mattias Höglund
DNA methylation is an important epigenetic modification that regulates several genes crucial for tumor development. To identify epigenetically regulated genes in bladder cancer, we performed genome wide expression analyses of eight‐bladder cancer cell lines treated with the demethylating agents 5‐aza‐2′‐cytidine and zebularine. To identify methylated C‐residues, we sequenced cloned DNA fragments from bisulfite‐treated genomic DNA. We identified a total of 1092 genes that showed ≥2‐fold altered expression in at least one cell line; 710 showed up‐regulation and 382 down‐regulation. Extensive sequencing of promoters from 25 genes in eight cell lines showed an association between methylation pattern and expression in 13 genes, including both CpG island and non‐CpG island genes. Overall, the methylation patterns showed a patchy appearance with short segments showing high level of methylation separated by larger segments with no methylation. This pattern was not associated with MeCP2 binding sites or with evolutionarily conserved sequences. The genes UBXD2, AQP11, and TIMP1 showed particular patchy methylation patterns. We found several high‐scoring and evolutionarily conserved transcription factor binding sites affected by methylated C residues. Two of the genes, FGF18 and MMP11, that were down‐regulated as response to 5‐aza‐2′‐cytidine and zebularine treatment showed methylation at specific sites in the untreated cells indicating an activating result of methylation. Apart from identifying epigenetically regulated genes, including TGFBR1, NUPR1, FGF18, TIMP1, and MMP11, that may be of importance for bladder cancer development the presented data also highlight the organization of the modified segments in methylated promoters. This article contains supplementary material available via the Internet at http://www.interscience.wiley.com/jpages/1045‐2257/suppmat.
American Journal of Pathology | 2013
Oliver Frings; Martin Augsten; Nicholas P. Tobin; Joseph W. Carlson; Janna Paulsson; Cristina Peña; Eleonor Olsson; Srinivas Veerla; Jonas Bergh; Arne Östman; Erik L. L. Sonnhammer
In this study, we describe a novel gene expression signature of platelet-derived growth factor (PDGF)-activated fibroblasts, which is able to identify breast cancers with a PDGF-stimulated fibroblast stroma and displays an independent and strong prognostic significance. Global gene expression was compared between PDGF-stimulated human fibroblasts and cultured resting fibroblasts. The most differentially expressed genes were reduced to a gene expression signature of 113 genes. The biological significance and prognostic capacity of this signature were investigated using four independent clinical breast cancer data sets. Concomitant high expression of PDGFβ receptor and its cognate ligands is associated with a high PDGF signature score. This supports the notion that the signature detects tumors with PDGF-activated stroma. Subsequent analyses indicated significant associations between high PDGF signature score and clinical characteristics, including human epidermal growth factor receptor 2 positivity, estrogen receptor negativity, high tumor grade, and large tumor size. A high PDGF signature score is associated with shorter survival in univariate analysis. Furthermore, the high PDGF signature score acts as a significant marker of poor prognosis in multivariate survival analyses, including classic prognostic markers, Ki-67 status, a proliferation gene signature, or other recently described stroma-derived gene expression signatures.