Srinivasan Balamurugan
Jinan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Srinivasan Balamurugan.
Journal of Biotechnology | 2016
Da-Wei Li; Shi-Ying Cen; Yu-Hong Liu; Srinivasan Balamurugan; Xin-Yan Zheng; Adili Alimujiang; Wei-Dong Yang; Jie-Sheng Liu; Hong-Ye Li
Oleaginous microalgae have received a considerable attention as potential biofuel feedstock. However, lack of industry-suitable strain with lipid rich biomass limits its commercial applications. Targeted engineering of lipogenic pathways represents a promising strategy to enhance the efficacy of microalgal oil production. In this study, a type 2 diacylglycerol acyltransferase (DGAT), a rate-limiting enzyme in triacylglycerol (TAG) biosynthesis, was identified and overexpressed in heterokont oleaginous microalga Nannochloropsis oceanica for the first time. Overexpression of DGAT2 in Nannochloropsis increased the relative transcript abundance by 3.48-fold in engineered microalgae cells. TAG biosynthesis was subsequently accelerated by DGAT2 overexpression and neutral lipid content was significantly elevated by 69% in engineered microalgae. The fatty acid profile determined by GC-MS revealed that fatty acid composition was altered in engineered microalgae. Saturated fatty acids and polyunsaturated fatty acids were found to be increased whereas monounsaturated fatty acids content decreased. Furthermore, DGAT2 overexpression did not show negative impact on algal growth parameters. The present investigation showed that the identified DGAT2 would be a potential candidate for enhancing TAG biosynthesis and might facilitate the development of promising oleaginous strains with industrial potential.
Biotechnology for Biofuels | 2017
Srinivasan Balamurugan; Xiang Wang; Hong-Lei Wang; Chun-Jing An; Hui Li; Da-Wei Li; Wei-Dong Yang; Jie-Sheng Liu; Hong-Ye Li
BackgroundMicroalgae have emerged as a potential feedstock for biofuels and bioactive components. However, lack of microalgal strains with promising triacylglycerol (TAG) content and desirable fatty acid composition have hindered its commercial feasibility. Attempts on lipid overproduction by metabolic engineering remain largely challenging in microalgae.ResultsIn this study, a microalgal 1-acyl-sn-glycerol-3-phosphate acyltransferase designated AGPAT1 was identified in the model diatom Phaeodactylum tricornutum. AGPAT1 contained four conserved acyltransferase motifs I–IV. Subcellular localization prediction and thereafter immuno-electron microscopy revealed the localization of AGPAT1 to plastid membranes. AGPAT1 overexpression significantly altered the primary metabolism, with increased total lipid content but decreased content of total carbohydrates and soluble proteins. Intriguingly, AGPAT1 overexpression coordinated the expression of other key genes such as DGAT2 and GPAT involved in TAG synthesis, and consequently increased TAG content by 1.81-fold with a significant increase in polyunsaturated fatty acids, particularly EPA and DHA. Moreover, besides increased lipid droplets in the cytosol, ultrastructural observation showed a number of TAG-rich plastoglobuli formed in plastids.ConclusionThe results suggested that AGPAT1 overexpression could elevate TAG biosynthesis and, moreover, revealed the occurrence of plastidial TAG synthesis in the diatom. Overall, our data provide a new insight into microalgal lipid metabolism and candidate target for metabolic engineering.
Metabolic Engineering | 2017
Jiao Xue; Srinivasan Balamurugan; Da-Wei Li; Yu-Hong Liu; Hao Zeng; Lan Wang; Wei-Dong Yang; Jie-Sheng Liu; Hong-Ye Li
Oleaginous microalgae have great prospects in the fields of feed, nutrition, biofuel, etc. However, biomass and lipid productivity in microalgae remain a major economic and technological bottleneck. Here we present a novel regulatory target, glucose-6-phosphate dehydrogenase (G6PD) from the pentose phosphate pathway (PPP), in boosting microalgal lipid accumulation. G6PD, involved in the formation of NADPH demanded in fatty acid biosynthesis as reducing power, was characterized in oleaginous microalga Phaeodactylum tricornutum. In G6PD overexpressing microalgae, transcript abundance of G6PD increased by 4.4-fold, and G6PD enzyme activity increased by more than 3.1-fold with enhanced NADPH production. Consequently, the lipid content increased by 2.7-fold and reached up to 55.7% of dry weight, while cell growth was not apparently affected. The fatty acid composition exhibited significant changes, including a remarkable increase in monounsaturated fatty acids C16:1 and C18:1 concomitant with a decrease in polyunsaturated fatty acids C20:5 and C22:6. G6PD was localized to the chloroplast and its overexpression stimulated an increase in the number and size of oil bodies. Proteomic and metabolomic analyzes revealed that G6PD play a key role in regulating pentose phosphate pathway and subsequently upregulating NADPH consuming pathways such as fatty acid synthesis, thus eventually leading to lipid accumulation. Our findings show the critical role of G6PD in microalgal lipid accumulation by enhancing NADPH supply and demonstrate that G6PD is a promising target for metabolic engineering.
Biotechnology and Applied Biochemistry | 2017
Jia-Wen Chen; Wan-Jun Liu; Dong-Xiong Hu; Xiang Wang; Srinivasan Balamurugan; Adili Alimujiang; Wei-Dong Yang; Jie-Sheng Liu; Hong-Ye Li
Oleaginous microalgae hold great promises for biofuel production. However, commercialization of microalgal biofuels remains impracticable due to the lack of suitable industrial strains with high growth rate and lipid productivity. Engineering of metabolic pathways is a potential strategy for the improvement of microalgal strains for the production of lipids and also value‐added products in microalgae. Malonyl CoA‐acyl carrier protein transacylase (MCAT) has been reported to be involved in fatty acid biosynthesis. Here, we identified a putative MCAT in the oleaginous marine microalga Nannochloropsis oceanica. NoMCAT overexpressing N. oceanica showed a higher growth rate and photosynthetic efficiency. The neutral lipid content of engineered lines showed a significant increase by up to 31% compared to wild type. Gas chromatography–mass spectrometry analysis revealed that NoMCAT overexpression significantly altered the fatty acid composition. The composition of eicosapentaenoic acid (C20:5), which is a polyunsaturated fatty acid necessary for animal nutrition, increased by 8%. These results demonstrate the role of MCAT in enhancing fatty acid biosynthesis and growth in microalgae, and also provide an insight into metabolic engineering of microalgae with high industrial potential.
Journal of Applied Phycology | 2017
Yang Lu; Xiang Wang; Srinivasan Balamurugan; Wei-Dong Yang; Jie-Sheng Liu; Hong-Po Dong; Hong-Ye Li
There is a huge interest in exploiting microalgae as an alternative bioenergy resource. Genetic improvement of microalgal strains with significant commercial potential is urgently demanded. Seipin has been shown to be associated with adipocyte differentiation and lipid droplet (LD) formation in mammals. However, very little is known about seipin in microalgae. Here, we identified a putative seipin in the oleaginous marine diatom Phaeodactylum tricornutum and developed a transgenic strain with overexpressed seipin. The transgenic strain possessed higher neutral lipid content and larger LDs than the wild type, and neutral lipid content was increased by 57%. Moreover, in this transgenic strain, the relative content of saturated fatty acids in total fatty acids was increased significantly, which improved lipid quality for the oil refinery. Our findings elucidated the significant potential role of seipin in regulating lipid accumulation and LD formation in microalgae for the first time.
Microbial Cell Factories | 2018
Li-Gong Zou; Jia-Wen Chen; Dan-Lin Zheng; Srinivasan Balamurugan; Da-Wei Li; Wei-Dong Yang; Jie-Sheng Liu; Hong-Ye Li
BackgroundMicroalgal metabolic engineering holds great promise for the overproduction of a wide range of commercial bioproducts. It demands simultaneous manipulation of multiple metabolic nodes. However, high-efficiency promoters have been lacking.ResultsHere we report a strong constitutive promoter Pt211 in expressing multiple target genes in oleaginous microalga Phaeodactylum tricornutum. Pt211 was revealed to contain significant cis-acting elements. GUS reporter and principal genes glycerol-3-phosphate acyltransferase (GPAT) and diacylglycerol acyltransferase 2 (DGAT2) involved in triacylglycerol biosynthesis were tested under driven of Pt211 in P. tricornutum. GUS staining and qPCR analysis showed strong GUS expression. DGAT2 and GPAT linked with a designed 2A sequence exhibited higher transcript abundances than WT, while algal growth and photosynthesis were not impaired.ConclusionThe total lipid content increased notably by 2.6-fold compared to WT and reached up to 57.5% (dry cell weight). Overall, our findings report a strong promoter and a strategy for coordinated manipulation of complex metabolic pathways.
Journal of Agricultural and Food Chemistry | 2017
Xiang Wang; Yu-Hong Liu; Wei Wei; Xia Zhou; Wasiqi Yuan; Srinivasan Balamurugan; Ting-Bin Hao; Wei-Dong Yang; Jie-Sheng Liu; Hong-Ye Li
Microalgal long-chain polyunsaturated fatty acids (LC-PUFAs) have emerged as promising alternatives to depleting fish oils. However, the overproduction of LC-PUFAs in microalgae has remained challenging. Here, we report a sequential metabolic engineering strategy that systematically overcomes the metabolic bottlenecks and overproduces LC-PUFAs. Malonyl CoA-acyl carrier protein transacylase, catalyzing the first committed step in type II fatty acid synthesis, and desaturase 5b, involved in fatty acid desaturation, were coordinately expressed in Phaeodactylum tricornutum. Engineered microalgae hyper-accumulated LC-PUFAs, with arachidonic acid (ARA) and docosahexaenoic acid (DHA) contents of up to 18.98 μg/mg and 9.15 μg/mg (dry weight), respectively. Importantly, eicosapentaenoic acid (EPA) was accumulated up to a highest record of 85.35 μg/mg by metabolic engineering. ARA and EPA were accumulated mainly in triacylglycerides, whereas DHA was found exclusively in phospholipids. Combinatorial expression of these critical enzymes led to the optimal increment of LC-PUFAs without unbalanced metabolic flux and demonstrated the practical feasibility of generating sustainable LC-PUFA production.
Marine Biotechnology | 2018
Da-Wei Li; Wei-Hong Xie; Ting-Bin Hao; Jia-Xi Cai; Tian-Bao Zhou; Srinivasan Balamurugan; Wei-Dong Yang; Jie-Sheng Liu; Hong-Ye Li
Photosynthetic microalgae are of burgeoning interest in the generation of commercial bioproducts. Microalgae accumulate high lipid content under adverse conditions, which in turn compromise their growth and hinder their commercial potential. Hence, it is necessary to engineer microalgae to mitigate elevated lipid accumulation and biomass. In this study, we identified acetyl-CoA carboxylase (ACCase) in oleaginous microalga Phaeodactylum tricornutum (PtACC2) and expressed constitutively in the chloroplast to demonstrate the potential of chloroplast engineering. Molecular characterization of transplastomic microalgae revealed that PtACC2 was integrated, transcribed and expressed successfully, and localized in the chloroplast. Enzymatic activity of ACCase was elevated by 3.3-fold, and the relative neutral lipid content increased substantially by 1.77-fold, and lipid content reached up to 40.8% of dry weight. Accordingly, the number and size of oil bodies markedly increased. Fatty acid profiling showed that the content of monounsaturated fatty acids increased, while polyunsaturated fatty acids decreased. This method provides a valuable genetic engineering toolbox for microalgal bioreactors with industrial significance.
Biotechnology Journal | 2018
Yu-Feng Yang; Da-Wei Li; Ting-Ting Chen; Ting-Bin Hao; Srinivasan Balamurugan; Wei-Dong Yang; Jie-Sheng Liu; Hong-Ye Li
Chrysolaminarin, the primary polysaccharide reservoir in some marine algae, has attracted much attention due to its broad health properties. However, its biosynthetic pathway and regulation mechanisms have rarely been reported which hinders the improvement of production efficiency. Therefore, this study aims to identify key metabolic nodes in the chrysolaminarin biosynthetic pathway. A phosphoglucomutase (PGM) in the model microalga Phaeodactylum tricornutum, revealing its critical role in chrysolaminarin biosynthesis is identified. PGM overexpression significantly elevates chrysolaminarin content by 2.54-fold and reaches 25.6% of cell dry weight; while algal growth and photosynthesis are not impaired. Besides, PGM overexpression up- and down-regulates the expression of chrysolaminarin and lipid biosynthetic genes, respectively. Microscopic analysis of aniline blue stained cells reveals that overproduced chrysolaminarin localized predominantly in vacuoles. Lipidomic analyses reveal that PGM overexpression significantly reduces the lipid content. The findings reveal the critical role of PGM in regulating the carbon flux between carbohydrate and lipid biosynthesis in microalgae, and provide a promising candidate for high efficiency production of chrysolaminarin.
Bioresource Technology | 2018
Yuhan Ma; Srinivasan Balamurugan; Wasiqi Yuan; Fan Yang; Caiguo Tang; Hao Hu; Huilan Zhang; Xian Shu; Minghao Li; Shengwei Huang; Hong-Ye Li; Lifang Wu
Provision of chemical modulators has emerged as an effective strategy to govern cell growth and development. Here, the impact of flavonoid quercetin on algal growth, lipid accumulation and transcriptional patterns was investigated in the green microalga Chlorella vulgaris. These results demonstrated that quercetin (15 μg/l) significantly enhanced the cellular biomass and photosynthetic efficiency, with up to 2.5-fold in the biomass in the stationary phase. Lipidomic analyses revealed that lipid content was increased by 1.8-fold. Furthermore, the functional mechanism of quercetin on the molecular level was dissected by transcriptomic analysis. Results revealed that quercetin upregulated the expression pattern of key genes involved in cellular signaling mechanisms such as phosphatidylinositol 4-kinase α, thus consequently enhanced cell growth. Altogether, the data present in this study demonstrate the dramatic role of quercetin on enhancing microalgal biomass and lipid accumulation by unprecedented regulation, of key metabolic nodes, for the first time and provide a novel insight into microalgal metabolism and regulation.