Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Srinivasan Dinesh Kumar is active.

Publication


Featured researches published by Srinivasan Dinesh Kumar.


Bioinformation | 2008

Oncomirs: the potential role of non-coding microRNAs in understanding cancer.

Jayapal Manikandan; J.J. Aarthi; Srinivasan Dinesh Kumar; P.N. Pushparaj

MicroRNAs (miRNAs) are members of a family of non-coding RNAs of 8-24 nucleotide RNA molecules that regulate target mRNAs. The first miRNAs, lin-4 and let-7, were first discovered in the year 1993 by Ambros, Ruvkun, and co-workers while studying development in Caenorhabditis elegans. miRNAs can play vital functions form C. elegans to higher vertebrates by typical Watson-Crick base pairing to specific mRNAs to regulate the expression of a specific gene. It has been well established that multicellular eukaryotes utilize miRNAs to regulate many biological processes such as embryonic development, proliferation, differentiation, and cell death. Recent studies have shown that miRNAs may provide new insight in cancer research. A recent study demonstrated that more than 50% of miRNA genes are located in fragile sites and cancer-associated genomic regions, suggesting that miRNAs may play a more important role in the pathogenesis of human cancers. Exploiting the emerging knowledge of miRNAs for the development of new human therapeutic applications will be important. Recent studies suggest that miRNA expression profiling can be correlated with disease pathogenesis and prognosis, and may ultimately be useful in the management of human cancer. In this review, we focus on how miRNAs regulate tumorigenesis by acting as oncogenes and anti-oncogenes in higher eukaryotes.


Neuroscience | 2010

Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia.

D. Nayak; Y. Huo; W.X.T. Kwang; Peter Natesan Pushparaj; Srinivasan Dinesh Kumar; Eng-Ang Ling; S.T. Dheen

Microglial activation has been implicated as one of the causative factors for neuroinflammation in various neurodegenerative diseases. The sphingolipid metabolic pathway plays an important role in inflammation, cell proliferation, survival, chemotaxis, and immunity in peripheral macrophages. In this study, we demonstrate that sphingosine kinase1 (SphK1), a key enzyme of the sphingolipid metabolic pathway, and its receptors are expressed in the mouse BV2 microglial cells and SphK1 alters the expression and production of proinflammatory cytokines and nitric oxide in microglia treated with lipopolysaccharide (LPS). LPS treatment increased the SphK1 mRNA and protein expression in microglia as revealed by the RT-PCR, Western blot and immunofluorescence. Suppression of SphK1 by its inhibitor, N, N Dimethylsphingosine (DMS), or siRNA resulted in decreased mRNA expression of TNF-alpha, IL-1beta, and iNOS and release of TNF-alpha and nitric oxide (NO) in LPS-activated microglia. Moreover, addition of sphingosine 1 phosphate (S1P), a breakdown product of sphingolipid metabolism, increased the expression levels of TNF-alpha, IL-1beta and iNOS and production of TNF-alpha and NO in activated microglia. Hence to summarize, suppression of SphK1 in activated microglia inhibits the production of proinflammatory cytokines and NO and the addition of exogenous S1P to activated microglia enhances their inflammatory responses. Since the chronic proinflammatory cytokine production by microglia has been implicated in neuroinflammation, modulation of SphK1 and S1P in microglia could be looked upon as a future potential therapeutic method in the control of neuroinflammation in neurodegenerative diseases.


Journal of Dental Research | 2008

siRNA, miRNA, and shRNA: in vivo Applications

P.N. Pushparaj; J.J. Aarthi; Jayapal Manikandan; Srinivasan Dinesh Kumar

RNA interference (RNAi), an accurate and potent gene-silencing method, was first experimentally documented in 1998 in Caenorhabditis elegans by Fire et al., who subsequently were awarded the 2006 Nobel Prize in Physiology/Medicine. Subsequent RNAi studies have demonstrated the clinical potential of synthetic small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) in dental diseases, eye diseases, cancer, metabolic diseases, neurodegenerative disorders, and other illnesses. siRNAs are generally from 21 to 25 base-pairs (bp) in length and have sequence-homology-driven gene-knockdown capability. RNAi offers researchers an effortless tool for investigating biological systems by selectively silencing genes. Key technical aspects—such as optimization of selectivity, stability, in vivo delivery, efficacy, and safety—need to be investigated before RNAi can become a successful therapeutic strategy. Nevertheless, this area shows a huge potential for the pharmaceutical industry around the globe. Interestingly, recent studies have shown that the small RNA molecules, either indigenously produced as microRNAs (miRNAs) or exogenously administered synthetic dsRNAs, could effectively activate a particular gene in a sequence-specific manner instead of silencing it. This novel, but still uncharacterized, phenomenon has been termed ‘RNA activation’ (RNAa). In this review, we analyze these research findings and discussed the in vivo applications of siRNAs, miRNAs, and shRNAs.


Cardiovascular Diabetology | 2007

Maternal diabetes induces congenital heart defects in mice by altering the expression of genes involved in cardiovascular development.

Srinivasan Dinesh Kumar; S. Thameem Dheen; Samuel Sam Wah Tay

BackgroundCongenital heart defects are frequently observed in infants of diabetic mothers, but the molecular basis of the defects remains obscure. Thus, the present study was performed to gain some insights into the molecular pathogenesis of maternal diabetes-induced congenital heart defects in mice.Methods and resultsWe analyzed the morphological changes, the expression pattern of some genes, the proliferation index and apoptosis in developing heart of embryos at E13.5 from streptozotocin-induced diabetic mice. Morphological analysis has shown the persistent truncus arteriosus combined with a ventricular septal defect in embryos of diabetic mice. Several other defects including defective endocardial cushion (EC) and aberrant myofibrillogenesis have also been found. Cardiac neural crest defects in experimental embryos were analyzed and validated by the protein expression of NCAM and PGP 9.5. In addition, the protein expression of Bmp4, Msx1 and Pax3 involved in the development of cardiac neural crest was found to be reduced in the defective hearts. The mRNA expression of Bmp4, Msx1 and Pax3 was significantly down-regulated (p < 0.001) in the hearts of experimental embryos. Further, the proliferation index was significantly decreased (p < 0.05), whereas the apoptotic cells were significantly increased (p < 0.001) in the EC and the ventricular myocardium of the experimental embryos.ConclusionIt is suggested that the down-regulation of genes involved in development of cardiac neural crest could contribute to the pathogenesis of maternal diabetes-induced congenital heart defects.


Journal of Neurotrauma | 2012

Effect of Blast Exposure on the Brain Structure and Cognition in Macaca fascicularis

Jia Lu; Kian Chye Ng; Geoffrey S. F. Ling; Jian Wu; David Jia Fei Poon; Enci Mary Kan; Mui Hong Tan; Yajun Wu; Ping Li; Shabbir Moochhala; Eric Yap; Lionel Kim Hock Lee; Melissa Teo; Ing Berne Yeh; Darvi Michell Bufete Sergio; Frederic Chua; Srinivasan Dinesh Kumar; Eng-Ang Ling

Blast injury to the brain is one of the major causes of death and can also significantly affect cognition and physical and psychological skills in survivors of blast. The complex mechanisms via which blast injury causes impairment of cognition and other symptoms are poorly understood. In this study, we investigated the effects of varying degrees of primary blast overpressure (BOP; 80 and 200 kPa) on the pathophysiological and magnetic resonance imaging (MRI) changes and neurocognitive performance as assessed by the monkey Cambridge Neuropsychological Test Automated Battery (mCANTAB) in non-human primates (NHP). The study aimed to examine the effects of neurobehavioral and histopathological changes in NHP. MRI and histopathology revealed ultrastructural changes in the brain, notably in the Purkinje neurons in the cerebellum and pyramidal neurons in the hippocampus, which were most vulnerable to the blast. The results correlated well with the behavioral changes and changes in motor coordination and working memory of the affected monkeys. In addition, there was white matter damage affecting myelinated axons, astrocytic hypertrophy, and increased aquaporin-4 (AQP-4) expression in astrocytes, suggesting cerebral edema. Increased apoptosis appeared to involve astrocytes and oligodendrocytes in the animals following blast exposure. The small sample size could have contributed to the non-significant outcome in cognitive performance post-blast and limited quantitative analyses. Nevertheless, the study has provided initial descriptive changes for establishing a primary BOP threshold for brain injury to serve as a useful platform for future investigations that aim to estimate brain injury potential and set safe limits of exposure.


Fertility and Sterility | 2011

Cryopreservation of mouse testicular tissue: prospect for harvesting spermatogonial stem cells for fertility preservation

Sok Siam Gouk; Yu Feng Jason Loh; Srinivasan Dinesh Kumar; Paul F. Watson; Lilia L. Kuleshova

OBJECTIVE To investigate the efficacy of vitrification, rapid freezing, and slow freezing in preserving testicular tissue for subsequent isolation of spermatogonial stem cells. DESIGN Experimental study. SETTING University-based laboratory. ANIMALS Immature mouse testicular tissue. INTERVENTION(S) The tunica of the testis was manipulated before cryopreservation. The tunica was either breached with a fine needle or completely removed, or the testis was sectioned longitudinally into halves. MAIN OUTCOME MEASURE(S) Cell viability by Trypan blue exclusion test and flow cytometry analysis of live-dead cytotoxicity test, measurement of hormonal production, enrichment of spermatogonial stem cells with use of magnetic-activated cell sorting technology. RESULT(S) Samples with tunica minimally penetrated with a needle point gave the highest cell viability after freezing and thawing. Vitrification protocol with use of an ethylene glycol-sucrose-based vitrification solution (40% vol/vol ethylene glycol-0.6 mol/L sucrose) was able to maintain postwarming cell viability and functions similar to those of noncryopreserved controls and significantly better than both conventional slow and rapid freezing protocols. Primitive spermatogonial stem cells were enriched successfully from vitrified tissue via magnetic-activated cell sorting. CONCLUSION(S) Vitrification of testicular tissue is a time- and cost-efficient strategy to preserve spermatogonial stem cells for potential transplantation procedure.


Free Radical Biology and Medicine | 2012

Zinc supplementation prevents cardiomyocyte apoptosis and congenital heart defects in embryos of diabetic mice

Srinivasan Dinesh Kumar; Murugaiyan Vijaya; Ramar Perumal Samy; S. Thameem Dheen; Minqin Ren; F. Watt; Y. James Kang; Boon-Huat Bay; Samuel Sam Wah Tay

Oxidative stress induced by maternal diabetes plays an important role in the development of cardiac malformations. Zinc (Zn) supplementation of animals and humans has been shown to ameliorate oxidative stress induced by diabetic cardiomyopathy. However, the role of Zn in the prevention of oxidative stress induced by diabetic cardiac embryopathy remains unknown. We analyzed the preventive role of Zn in diabetic cardiac embryopathy by both in vivo and in vitro studies. In vivo study revealed a significant decrease in lipid peroxidation, superoxide ions, and oxidized glutathione and an increase in reduced glutathione, nitric oxide, and superoxide dismutase in the developing heart at embryonic days (E) 13.5 and 15.5 in the Zn-supplemented diabetic group when compared to the diabetic group. In addition, significantly down-regulated protein and mRNA expression of metallothionein (MT) in the developing heart of embryos from diabetic group was rescued by Zn supplement. Further, the nuclear microscopy results showed that trace elements such as phosphorus, calcium, and Zn levels were significantly increased (P<0.001), whereas the iron level was significantly decreased (P<0.05) in the developing heart of embryos from the Zn-supplemented diabetic group. In vitro study showed a significant increase in cellular apoptosis and the generation of reactive oxygen species (ROS) in H9c2 (rat embryonic cardiomyoblast) cells exposed to high glucose concentrations. Supplementation with Zn significantly decreased apoptosis and reduced the levels of ROS. In summary, oxidative stress induced by maternal diabetes could play a role in the development and progression of cardiac embryopathy, and Zn supplementation could be a potential therapy for diabetic cardiac embryopathy.


Journal of Immunology | 2009

Retraction: Sphingosine Kinase1 Is Pivotal for Fc"RI-Mediated Mast Cell Signaling and Functional Responses In Vitro and In Vivo

Peter Natesan Pushparaj; Jayapal Manikandan; Hwee Kee Tay; Shiau Chen H'ng; Srinivasan Dinesh Kumar; Josef Pfeilschifter; Andrea Huwiler; Alirio J. Melendez

Mast cell degranulation is pivotal to allergic diseases; investigating novel pathways triggering mast cell degranulation would undoubtedly have important therapeutic potential. FcεRI-mediated degranulation has contradictorily been shown to require SphK1 or SphK2, depending on the reports. We investigated the in vitro and in vivo specific role(s) of SphK1 and SphK2 in FcεRI-mediated responses, using specific small interfering RNA-gene silencing. The small interfering RNA-knockdown of SphK1 in mast cells inhibited several signaling mechanisms and effector functions, triggered by FcεRI stimulation including: Ca2+ signals, NFκB activation, degranulation, cytokine/chemokine, and eicosanoid production, whereas silencing SphK2 had no effect at all. Moreover, silencing SPHK1 in vivo, in different strains of mice, strongly inhibited mast cell-mediated anaphylaxis, including inhibition of vascular permeability, tissue mast cell degranulation, changes in temperature, and serum histamine and cytokine levels, whereas silencing SPHK2 had no effect and the mice developed anaphylaxis. Our data differ from a recent report using SPHK1−/− and SPHK2−/− mice, which showed that SphK2 was required for FcεRI-mediated mast cell responses. We performed experiments in mast cells derived from SPHK1−/− and SPHK2−/− mice and show that the calcium response and degranulation, triggered by FcεRI-cross-linking, is not different from that triggered in wild-type cells. Moreover, IgE-mediated anaphylaxis in the knockout mice showed similar levels in temperature changes and serum histamine to that from wild-type mice, indicating that there was no protection from anaphylaxis for either knockout mice. Thus, our data strongly suggest a previously unrecognized compensatory mechanism in the knockout mice, and establishes a role for SphK1 in IgE-mediated mast cell responses.


Modern Pathology | 2009

Y-Box-binding protein-1 is a promising predictive marker of radioresistance and chemoradioresistance in nasopharyngeal cancer.

Wei-Lin Tay; George Wai-Cheong Yip; Puay Hoon Tan; Ken Matsumoto; Richard Yeo; Tze-Pin Ng; Srinivasan Dinesh Kumar; Masafumi Tsujimoto; Boon-Huat Bay

The Y-Box-binding protein-1, a member of the cold-shock domain DNA- and RNA-binding protein superfamily, is known to mediate chemoresistance. The aim of this study was to determine the expression of Y-Box-binding protein-1 in nasopharyngeal cancer in vitro and in tumor tissue samples as well as analyze the clinicopathological significance of Y-Box-binding protein-1 expression in nasopharyngeal cancer, in particular as a predictor of outcome after treatment. The Y-Box-binding protein-1 expression profile was evaluated at the mRNA and protein levels in poorly differentiated CNE-2 nasopharyngeal cancer cells by real-time RT-PCR, western blot analysis and immunohistochemistry. Y-Box-binding protein-1 expression in 143 nasopharyngeal cancer specimens was examined by immunohistochemistry and correlated with clinicopathologic parameters. Y-Box-binding protein-1 mRNA and protein were found to be expressed in CNE-2 nasopharyngeal cancer cells in vitro. Of 143 patient tissue sections, 137 (96%) were stained positive for the Y-Box-binding protein-1 protein. Y-Box-binding protein-1 immunostaining was observed to be predominantly cytoplasmic. A higher recurrence of nasopharyngeal cancer was found in patients whose tissues had increased Y-Box-binding protein-1 expression (P<0.001). The Cox proportionate hazard regression model also established that high Y-Box-binding protein-1 immunoreactivity was significantly correlated with increased risk (2.13 times) of recurrence as compared to low Y-Box-binding protein-1 immunoreactivity (P=0.01). Within groups of patients treated by radiotherapy or chemoradiotherapy, recurrent cases had significantly higher Y-Box-binding protein-1 expression than nonrecurrent cases (P<0.001 and P=0.0035, respectively). These data suggest that Y-Box-binding protein-1 expression has clinicopathological significance with potential as a predictive marker of recurrence in nasopharyngeal cancer patients who undergo radiotherapy or chemoradiotherapy.


Bioinformation | 2008

RNAi and RNAa--the yin and yang of RNAome.

P.N. Pushparaj; J.J. Aarthi; Srinivasan Dinesh Kumar; Jayapal Manikandan

RNA interference (RNAi) is a powerful technology with huge applications for functional genomics, target identification in drug discovery and elucidation of molecular signaling pathways. Current RNAi studies have demonstrated the clinical potential of small interfering RNAs (siRNAs) in metabolic diseases, cancer, AIDS, malaria, neurodegenerative disorders, dental diseases and other illnesses. Interestingly, recent studies have shown that the small RNA molecules, either indigenously produced as microRNAs (miRNAs) or exogenously administered synthetic dsRNAs could effectively activate a particular gene in a sequence specific manner instead of silencing it. This novel, but still uncharacterized, phenomenon has been termed as RNA activation (RNAa). The paradoxical concept of Yin and Yang, which describe two primal opposing but complementary principles, can potentially be applied to elucidate the complex phenomenon of RNAa/RNAi in the RNAome. This warrants a proper understanding of the RNAi/RNAa molecular pathways in living organisms before any of the small dsRNAs can potentially be exploited for therapeutics in human beings.

Collaboration


Dive into the Srinivasan Dinesh Kumar's collaboration.

Top Co-Authors

Avatar

J.J. Aarthi

Singapore General Hospital

View shared research outputs
Top Co-Authors

Avatar

P.N. Pushparaj

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Boon-Huat Bay

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jayarama Reddy Venugopal

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Seeram Ramakrishna

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Chinnasamy Gandhimathi

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Samuel Sam Wah Tay

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

George Wai-Cheong Yip

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jayapal Manikandan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

S. Thameem Dheen

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge