Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Srinivasu Kunuku is active.

Publication


Featured researches published by Srinivasu Kunuku.


ACS Applied Materials & Interfaces | 2013

Investigations on Diamond Nanostructuring of Different Morphologies by the Reactive-Ion Etching Process and Their Potential Applications

Srinivasu Kunuku; Kamatchi Jothiramalingam Sankaran; Cheng-Yen Tsai; Wen-Hao Chang; Nyan-Hwa Tai; Keh-Chyang Leou; I-Nan Lin

We report the systematic studies on the fabrication of aligned, uniform, and highly dense diamond nanostructures from diamond films of various granular structures. Self-assembled Au nanodots are used as a mask in the self-biased reactive-ion etching (RIE) process, using an O2/CF4 process plasma. The morphology of diamond nanostructures is a close function of the initial phase composition of diamond. Cone-shaped and tip-shaped diamond nanostructures result for microcrystalline diamond (MCD) and nanocrystalline diamond (NCD) films, whereas pillarlike and grasslike diamond nanostructures are obtained for Ar-plasma-based and N2-plasma-based ultrananocrystalline diamond (UNCD) films, respectively. While the nitrogen-incorporated UNCD (N-UNCD) nanograss shows the most-superior electron-field-emission properties, the NCD nanotips exhibit the best photoluminescence properties, viz, different applications need different morphology of diamond nanostructures to optimize the respective characteristics. The optimum diamond nanostructure can be achieved by proper choice of granular structure of the initial diamond film. The etching mechanism is explained by in situ observation of optical emission spectrum of RIE plasma. The preferential etching of sp(2)-bonded carbon contained in the diamond films is the prime factor, which forms the unique diamond nanostructures from each type of diamond films. However, the excited oxygen atoms (O*) are the main etching species of diamond film.


RSC Advances | 2014

Development of long lifetime cathode materials for microplasma application

Srinivasu Kunuku; Kamatchi Jothiramalingam Sankaran; Chung-Li Dong; Nyan-Hwa Tai; Keh-Chyang Leou; I-Nan Lin

In this paper we present the growth of three kinds of diamond films including ultrananocrystalline diamond (UNCD), nitrogen doped UNCD and hybrid granular structured diamond (HiD) films on Au coated silicon for applying as a cathode in a parallel-plate type microplasma device. The phase constituents and microstructures of these diamond films were investigated in order to understand the role of the intrinsic properties of these cathode materials on manipulation of the plasma characteristics of the corresponding devices. We observed that, while the diamond materials with a high fraction of sp2-bonded carbons exhibited superior electron field emission (EFE) properties and hence better plasma illumination (PI) behavior, the cathode materials with a suitable microstructure are required to ensure longer lifetime for practical applications of the microplasma devices. Based on these observations, we have developed hybrid granular structured diamond films, in which the sp2-bonded carbons were hidden in the boundaries between the sp3-bonded diamond grains, such that the films exhibited not only excellent EFE properties and PI behavior but also good PI behavior with long lifetime.


ACS Applied Materials & Interfaces | 2014

Bias-Enhanced Nucleation and Growth Processes for Ultrananocrystalline Diamond Films in Ar/CH4 Plasma and Their Enhanced Plasma Illumination Properties

Adhimoorthy Saravanan; Bohr-Ran Huang; Kamatchi Jothiramalingam Sankaran; Srinivasu Kunuku; Chung-Li Dong; Keh-Chyang Leou; Nyan-Hwa Tai; I-Nan Lin

Microstructural evolution of ultrananocrystalline diamond (UNCD) films in the bias-enhanced nucleation and growth (BEN-BEG) process in CH4/Ar plasma is systematically investigated. The BEN-BEG UNCD films possess higher growth rate and better electron field emission (EFE) and plasma illumination (PI) properties than those of the films grown without bias. Transmission electron microscopy investigation reveals that the diamond grains are formed at the beginning of growth for films grown by applying the bias voltage, whereas the amorphous carbon forms first and needs more than 30 min for the formation of diamond grains for the films grown without bias. Moreover, the application of bias voltage stimulates the formation of the nanographite phases in the grain boundaries of the UNCD films such that the electrons can be transported easily along the graphite phases to the emitting surface, resulting in superior EFE properties and thus leading to better PI behavior. Interestingly, the 10 min grown UNCD films under bias offer the lowest turn-on field of 4.2 V/μm with the highest EFE current density of 2.6 mA/cm(2) at an applied field of 7.85 V/μm. Such superior EFE properties attained for 10 min bias grown UNCD films leads to better plasma illumination (PI) properties, i.e., they show the smallest threshold field of 3300 V/cm with largest PI current density of 2.10 mA/cm(2) at an applied field of 5750 V/cm.


ACS Applied Materials & Interfaces | 2014

Enhancement of the stability of electron field emission behavior and the related microplasma devices of carbon nanotubes by coating diamond films.

Ting-Hsun Chang; Srinivasu Kunuku; Ying-Jhan Hong; Keh-Chyang Leou; Tri-Rung Yew; Nyan-Hwa Tai; I-Nan Lin

The enhanced lifetime stability for the carbon nanotubes (CNTs) by coating hybrid granular structured diamond (HiD) films on Au-decorated CNTs/Si using a two-step microwave plasma enhanced chemical vapor deposition process was reported. Electron field emission (EFE) properties of HiD/Au/CNTs emitters show a low turn-on field (E0) of 3.50 V/μm and a high emission current density (Je) of 0.64 mA/cm(2) at an applied field of 5.0 V/μm. There is no notable current degradation or fluctuation over a period of τ(HiD/Au/CNTs) = 360 min for HiD/CNTs EFE emitters tested under a constant current of 4.5 μA. The robustness of the HiD/CNTs EFE emitter is overwhelmingly superior to that of bare CNTs EFE emitters (τ(CNTs) = 30 min), even though the HiD/Au/CNTs do not show the same good EFE properties as CNTs, which are E0 = 0.73 V/μm and Je = 1.10 mA/cm(2) at 1.05 V/μm. Furthermore, the plasma illumination (PI) property of a parallel-plate microplasma device fabricated using the HiD/Au/CNTs as a cathode shows a high Ar plasma current density of 1.76 mA/cm(2) at an applied field of 5600 V/cm with a lifetime of plasma stability of about 209 min, which is markedly better than the devices utilizing bare CNTs as a cathode. The CNT emitters coated with diamond films possessing marvelous EFE and PI properties with improved lifetime stability have great potential for the applications as cathodes in flat-panel displays and microplasma display devices.


Nanoscale Research Letters | 2012

Microplasma illumination enhancement of vertically aligned conducting ultrananocrystalline diamond nanorods

Kamatchi Jothiramalingam Sankaran; Srinivasu Kunuku; Shiu-Cheng Lou; Joji Kurian; Huang-Chin Chen; Chi-Young Lee; Nyan-Hwa Tai; Keh-Chyang Leou; Chulung Chen; I-Nan Lin

Vertically aligned conducting ultrananocrystalline diamond (UNCD) nanorods are fabricated using the reactive ion etching method incorporated with nanodiamond particles as mask. High electrical conductivity of 275 Ω·cm−1 is obtained for UNCD nanorods. The microplasma cavities using UNCD nanorods as cathode show enhanced plasma illumination characteristics of low threshold field of 0.21 V/μm with plasma current density of 7.06 mA/cm2 at an applied field of 0.35 V/μm. Such superior electrical properties of UNCD nanorods with high aspect ratio potentially make a significant impact on the diamond-based microplasma display technology.


ACS Applied Materials & Interfaces | 2014

Enhancement of the Electron Field Emission Properties of Ultrananocrystalline Diamond Films via Hydrogen Post-Treatment

Kamatchi Jothiramalingam Sankaran; Srinivasu Kunuku; Keh-Chyang Leou; Nyan-Hwa Tai; I-Nan Lin

Enhanced electron field emission (EFE) properties due to hydrogen post-treatment at 600 °C have been observed for ultrananocrystalline diamond (UNCD) films. The EFE properties of H2-gas-treated UNCD films could be turned on at a low field of 5.3 V/μm, obtaining an EFE current density of 3.6 mA/cm(2) at an applied field of 11.7 V/μm that is superior to those of UNCD films treated with H2 plasma. Transmission electron microscopic investigations revealed that H2 plasma treatment induced amorphous carbon (a-C) (and graphitic) phases only on the surface region of the UNCD films but the interior region of the UNCD films still contained very small amounts of a-C (and graphitic) grain boundary phases, resulting in a resistive transport path and inferior EFE properties. On the other hand, H2 gas treatment induces a-C (and graphitic) phases along the grain boundary throughout the thickness of the UNCD films, resulting in creation of conduction channels for the electrons to transport from the bottom of the films to the top and hence the superior EFE properties.


ACS Applied Materials & Interfaces | 2015

Role of Carbon Nanotube Interlayer in Enhancing the Electron Field Emission Behavior of Ultrananocrystalline Diamond Coated Si-Tip Arrays

Ting-Hsun Chang; Srinivasu Kunuku; Joji Kurian; Afsal Manekkathodi; Lih-Juann Chen; Keh-Chyang Leou; Nyan-Hwa Tai; I-Nan Lin

We improved the electron field emission properties of ultrananocrystalline diamond (UNCD) films grown on Si-tip arrays by using the carbon nanotubes (CNTs) as interlayer and post-treating the films in CH4/Ar/H2 plasma. The use of CNTs interlayer effectively suppresses the presence of amorphous carbon in the diamond-to-Si interface that enhances the transport of electrons from Si, across the interface, to diamond. The post-treatment process results in hybrid-granular-structured diamond (HiD) films via the induction of the coalescence of the ultrasmall grains in these films that enhanced the conductivity of the films. All these factors contribute toward the enhancement of the electron field emission (EFE) process for the HiDCNT/Si-tip emitters, with low turn-on field of E0 = 2.98 V/μm and a large current density of 1.68 mA/cm(2) at an applied field of 5.0 V/μm. The EFE lifetime stability under an operation current of 6.5 μA was improved substantially to τHiD/CNT/Si-tip = 365 min. Interestingly, these HiDCNT/Si-tip materials also show enhanced plasma illumination behavior, as well as improved robustness against plasma ion bombardment when they are used as the cathode for microplasma devices. The study concludes that the use of CNT interlayers not only increase the potential of these materials as good EFE emitters, but also prove themselves to be good microplasma devices with improved performance.


Applied Physics Letters | 2014

Enhancing the stability of microplasma device utilizing diamond coated carbon nanotubes as cathode materials

Ting-Hsun Chang; Srinivasu Kunuku; Kamatchi Jothiramalingam Sankaran; Keh-Chyang Leou; Nyan-Hwa Tai; I-Nan Lin

This paper reports the enhanced stability of a microplasma device by using hybrid-granular-structured diamond (HiD) film coated carbon nanotubes (CNTs) as cathode, which overcomes the drawback of short life time in the CNTs-based one. The microplasma device can be operated more than 210 min without showing any sign of degradation, whereas the CNTs-based one can last only 50 min. Besides the high robustness against the Ar-ion bombardment, the HiD/CNTs material also possesses superior electron field emission properties with low turn-on field of 3.2 V/μm, which is considered as the prime factor for the improved plasma illumination performance of the devices.


ACS Applied Materials & Interfaces | 2015

High Stability Electron Field Emitters Synthesized via the Combination of Carbon Nanotubes and N2-Plasma Grown Ultrananocrystalline Diamond Films

Ting-Hsun Chang; Ping-Yen Hsieh; Srinivasu Kunuku; Shiu-Cheng Lou; Divinah Manoharan; Keh-Chyang Leou; I-Nan Lin; Nyan-Hwa Tai

An electron field emitter with superior electron field emission (EFE) properties and improved lifetime stability is being demonstrated via the combination of carbon nanotubes and the CH4/N2 plasma grown ultrananocrystalline diamond (N-UNCD) films. The resistance of the carbon nanotubes to plasma ion bombardment is improved by the formation of carbon nanocones on the side walls of the carbon nanotubes, thus forming strengthened carbon nanotubes (s-CNTs). The N-UNCD films can thus be grown on s-CNTs, forming N-UNCD/s-CNTs carbon nanocomposite materials. The N-UNCD/s-CNTs films possess good conductivity of σ = 237 S/cm and marvelous EFE properties, such as low turn-on field of (E0) = 3.58 V/μm with large EFE current density of (J(e)) = 1.86 mA/cm(2) at an applied field of 6.0 V/μm. Moreover, the EFE emitters can be operated under 0.19 mA/cm(2) for more than 350 min without showing any sign of degradation. Such a superior EFE property along with high robustness characteristic of these combination of materials are not attainable with neither N-UNCD films nor s-CNTs films alone. Transmission electron microscopic investigations indicated that the N-UNCD films contain needle-like diamond grains encased in a few layers of nanographitic phase, which enhanced markedly the transport of electrons in the N-UNCD films. Moreover, the needle-like diamond grains were nucleated from the s-CNTs without the necessity of forming the interlayer that facilitate the transport of electrons crossing the diamond-to-Si interface. Both these factors contributed to the enhanced EFE behavior of the N-UNCD/s-CNTs films.


Scientific Reports | 2016

Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures

Kamatchi Jothiramalingam Sankaran; Duc Quang Hoang; Srinivasu Kunuku; Svetlana Korneychuk; Stuart Turner; Paulius Pobedinskas; Sien Drijkoningen; Marlies K. Van Bael; J. D’Haen; Johan Verbeeck; Keh-Chyang Leou; I-Nan Lin; Ken Haenen

Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/μm, a high FEE current density of 1.48 mA/cm2 and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/μm with 0.21 mA/cm2 FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission.

Collaboration


Dive into the Srinivasu Kunuku's collaboration.

Top Co-Authors

Avatar

Keh-Chyang Leou

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nyan-Hwa Tai

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ting-Hsun Chang

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge