Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Srinivasulu Ale is active.

Publication


Featured researches published by Srinivasulu Ale.


Journal of Environmental Quality | 2012

Evaluation of simulated strategies for reducing nitrate-nitrogen losses through subsurface drainage systems.

Srinivasulu Ale; Laura C. Bowling; Mohamed A. Youssef; Sylvie M. Brouder

The nitrates (NO(3)-N) lost through subsurface drainage in the Midwest often exceed concentrations that cause deleterious effects on the receiving streams and lead to hypoxic conditions in the northern Gulf of Mexico. The use of drainage and water quality models along with observed data analysis may provide new insight into the water and nutrient balance in drained agricultural lands and enable evaluation of appropriate measures for reducing NO(3)-N losses. DRAINMOD-NII, a carbon (C) and nitrogen (N) simulation model, was field tested for the high organic matter Drummer soil in Indiana and used to predict the effects of fertilizer application rate and drainage water management (DWM) on NO-N losses through subsurface drainage. The model was calibrated and validated for continuous corn (Zea mays L.) (CC) and corn-soybean [Glycine max (L.) Merr.] (CS) rotation treatments separately using 7 yr of drain flow and NO(3)-N concentration data. Among the treatments, the Nash-Sutcliffe efficiency of the monthly NO(3)-N loss predictions ranged from 0.30 to 0.86, and the percent error varied from -19 to 9%. The medians of the observed and predicted monthly NO(3)-N losses were not significantly different. When the fertilizer application rate was reduced ~20%, the predicted NO(3)-N losses in drain flow from the CC treatments was reduced 17% (95% confidence interval [CI], 11-25), while losses from the CS treatment were reduced by 10% (95% CI, 1-15). With DWM, the predicted average annual drain flow was reduced by about 56% (95% CI, 49-67), while the average annual NO(3)-N losses through drain flow were reduced by about 46% (95% CI, 32-57) for both tested crop rotations. However, the simulated NO(3)-N losses in surface runoff increased by about 3 to 4 kg ha(-1) with DWM. For the simulated conditions at the study site, implementing DWM along with reduced fertilizer application rates would be the best strategy to achieve the highest NO(3)-N loss reductions to surface water. The suggested best strategies would reduce the NO(3)-N losses to surface water by 38% (95% CI, 29-46) for the CC treatments and by 32% (95% CI, 23-40) for the CS treatments.


Gcb Bioenergy | 2016

Hydrological responses of land use change from cotton (Gossypium hirsutum L.) to cellulosic bioenergy crops in the Southern High Plains of Texas, USA

Yong Chen; Srinivasulu Ale; Nithya Rajan; Cristine L. S. Morgan; Jongyoon Park

The Southern High Plains (SHP) region of Texas in the United States, where cotton is grown in a vast acreage, has the potential to grow cellulosic bioenergy crops such as perennial grasses and biomass sorghum (Sorghum bicolor). Evaluation of hydrological responses and biofuel production potential of hypothetical land use change from cotton (Gossypium hirsutum L.) to cellulosic bioenergy crops enables better understanding of the associated key agroecosystem processes and provides for the feasibility assessment of the targeted land use change in the SHP. The Soil and Water Assessment Tool (SWAT) was used to assess the impacts of replacing cotton with perennial Alamo switchgrass (Panicum virgatum L.), Miscanthus × giganteus (Miscanthus sinensis Anderss. [Poaceae]), big bluestem (Andropogon gerardii) and annual biomass sorghum on water balances, water use efficiency and biofuel production potential in the Double Mountain Fork Brazos watershed. Under perennial grass scenarios, the average (1994–2009) annual surface runoff from the entire watershed decreased by 6–8% relative to the baseline cotton scenario. In contrast, surface runoff increased by about 5% under the biomass sorghum scenario. Perennial grass land use change scenarios suggested an increase in average annual percolation within a range of 3–22% and maintenance of a higher soil water content during August to April compared to the baseline cotton scenario. About 19.1, 11.1, 3.2 and 8.8 Mg ha−1 of biomass could potentially be produced if cotton area in the watershed would hypothetically be replaced by Miscanthus, switchgrass, big bluestem and biomass sorghum, respectively. Finally, Miscanthus and switchgrass were found to be ideal bioenergy crops for the dryland and irrigated systems, respectively, in the study watershed due to their higher water use efficiency, better water conservation effects, greater biomass and biofuel production potential, and minimum crop management requirements.


Science of The Total Environment | 2014

Long-term (1930–2010) trends in groundwater levels in Texas: Influences of soils, landcover and water use

Sriroop Chaudhuri; Srinivasulu Ale

Rapid groundwater depletion has raised grave concerns about sustainable development in many parts of Texas, as well as in other parts of the world. Previous hydrologic investigations on groundwater levels in Texas were conducted mostly on aquifer-specific basis, and hence lacked state-wide panoramic view. The aim of this study was to present a qualitative overview of long-term (1930-2010) trends in groundwater levels in Texas and identify spatial patterns by applying different statistical (boxplots, correlation-regression, hierarchical cluster analysis) and geospatial techniques (Morans I, Local Indicators of Spatial Association) on 136,930 groundwater level observations from Texas Water Development Boards database. State-wide decadal median water-levels declined from about 14 m from land surface in the 1930s to about 36 m in the 2000s. Number of counties with deeper median water-levels (water-level depth>100 m) increased from 2 to 13 between 1930s and 2000s, accompanied by a decrease in number of counties having shallower median water-levels (water-level depth<25 m) from 134 to 113. Water-level declines across Texas, however, mostly followed logarithmic trends marked by leveling-off phenomena in recent times. Assessment of water-levels by Groundwater Management Areas (GMA), management units created to address groundwater depletion issues, indicated hotspots of deep water-levels in Texas Panhandle and GMA 8 since the 1960s. Contrasting patterns in water use, landcover, geology and soil properties distinguished Texas Panhandle from GMA 8. Irrigated agriculture is the major cause of depletion in the Texas Panhandle as compared to increasing urbanization in GMA 8. Overall our study indicated that use of robust spatial and statistical methods can reveal important details about the trends in water-level changes and shed lights on the associated factors. Due to very generic nature, techniques used in this study can also be applied to other areas with similar eco-hydrologic issues to identify regions that warrant future management actions.


Science of The Total Environment | 2013

Characterization of groundwater resources in the Trinity and Woodbine aquifers in Texas

Sriroop Chaudhuri; Srinivasulu Ale

A vast region in north-central Texas, centering on Dallas-Fort Worth metroplex, suffers from intense groundwater drawdown and water quality degradation, which led to inclusion of 18 counties of this region into Priority Groundwater Management Areas. We combined aquifer-based and county-based hydrologic analyses to (1) assess spatio-temporal changes in groundwater level and quality between 1960 and 2010 in the Trinity and Woodbine aquifers underlying the study region, (2) delve into major hydrochemical facies with reference to aquifer hydrostratigraphy, and (3) identify county-based spatial zones to aid in future groundwater management initiatives. Water-level and quality data was obtained from the Texas Water Development Board (TWDB) and analyzed on a decadal scale. Progressive water-level decline was the major concern in the Trinity aquifer with >50% of observations occurring at depths >100 m since the 1980s, an observation becoming apparent only in the 2000s in the Woodbine aquifer. Water quality degradation was the major issue in the Woodbine aquifer with substantially higher percentage of observations exceeding the secondary maximum contaminant levels (SMCL; a non-enforceable threshold set by the United State Environmental Protection Agency (USEPA)) and/or maximum contaminant level (MCL, a legally enforceable drinking water standard set by the USEPA) for sulfate (SO4(2-)), chloride (Cl(-)), and fluoride (F(-)) in each decade. In both aquifers, however, >70% of observations exceeded the SMCL for total dissolved solids indicating high groundwater salinization. Water-level changes in Trinity aquifer also had significant negative impact on water quality. Hydrochemical facies in this region sequentially evolved from Ca-Mg-HCO3 and Ca-HCO3 in the fluvial sediments of the west to Na-SO4-Cl in the deltaic sediments to the east. Sequentially evolving hydrogeochemical facies and increasing salinization closely resembled regional groundwater flow pattern. Distinct spatial zones based on homogenous hydrologic characteristics have become increasingly apparent over time indicating necessity of zone-specific groundwater management strategies.


Journal of Environmental Quality | 2012

Spatio-temporal variability of groundwater nitrate concentration in Texas: 1960 to 2010.

Sriroop Chaudhuri; Srinivasulu Ale; Paul B. DeLaune; Nithya Rajan

Nitrate (NO) is a major contaminant and threat to groundwater quality in Texas. High-NO groundwater used for irrigation and domestic purposes has serious environmental and health implications. The objective of this study was to evaluate spatio-temporal trends in groundwater NO concentrations in Texas on a county basis from 1960 to 2010 with special emphasis on the Texas Rolling Plains (TRP) using the Texas Water Development Boards groundwater quality database. Results indicated that groundwater NO concentrations have significantly increased in several counties since the 1960s. In 25 counties, >30% of the observations exceeded the maximum contamination level (MCL) for NO (44 mg L NO) in the 2000s as compared with eight counties in the 1960s. In Haskell and Knox Counties of the TRP, all observations exceeded the NO MCL in the 2000s. A distinct spatial clustering of high-NO counties has become increasingly apparent with time in the TRP, as indicated by different spatial indices. County median NO concentrations in the TRP region were positively correlated with county-based area estimates of crop lands, fertilized croplands, and irrigated croplands, suggesting a negative impact of agricultural practices on groundwater NO concentrations. The highly transmissive geologic and soil media in the TRP have likely facilitated NO movement and groundwater contamination in this region. A major hindrance in evaluating groundwater NO concentrations was the lack of adequate recent observations. Overall, the results indicated a substantial deterioration of groundwater quality by NO across the state due to agricultural activities, emphasizing the need for a more frequent and spatially intensive groundwater sampling.


Journal of Environmental Quality | 2013

Evaluation of the hooghoudt and kirkham tile drain equations in the soil and water assessment tool to simulate tile flow and nitrate-nitrogen.

Daniel N. Moriasi; Prasanna H. Gowda; Jeffrey G. Arnold; David J. Mulla; Srinivasulu Ale; Jean L. Steiner; Mark D. Tomer

Subsurface tile drains in agricultural systems of the midwestern United States are a major contributor of nitrate-N (NO-N) loadings to hypoxic conditions in the Gulf of Mexico. Hydrologic and water quality models, such as the Soil and Water Assessment Tool, are widely used to simulate tile drainage systems. The Hooghoudt and Kirkham tile drain equations in the Soil and Water Assessment Tool have not been rigorously tested for predicting tile flow and the corresponding NO-N losses. In this study, long-term (1983-1996) monitoring plot data from southern Minnesota were used to evaluate the SWAT version 2009 revision 531 (hereafter referred to as SWAT) model for accurately estimating subsurface tile drain flows and associated NO-N losses. A retention parameter adjustment factor was incorporated to account for the effects of tile drainage and slope changes on the computation of surface runoff using the curve number method (hereafter referred to as Revised SWAT). The SWAT and Revised SWAT models were calibrated and validated for tile flow and associated NO-N losses. Results indicated that, on average, Revised SWAT predicted monthly tile flow and associated NO-N losses better than SWAT by 48 and 28%, respectively. For the calibration period, the Revised SWAT model simulated tile flow and NO-N losses within 4 and 1% of the observed data, respectively. For the validation period, it simulated tile flow and NO-N losses within 8 and 2%, respectively, of the observed values. Therefore, the Revised SWAT model is expected to provide more accurate simulation of the effectiveness of tile drainage and NO-N management practices.


Science of The Total Environment | 2014

Temporal evolution of depth-stratified groundwater salinity in municipal wells in the major aquifers in Texas, USA.

Sriroop Chaudhuri; Srinivasulu Ale

We assessed spatial distribution of total dissolved solids (TDS) in shallow (<50 m), intermediate (50-150 m), and deep (>150 m) municipal (domestic and public supply) wells in nine major aquifers in Texas for the 1960s-1970s and 1990s-2000s periods using geochemical data obtained from the Texas Water Development Board. For both time periods, the highest median groundwater TDS concentrations in shallow wells were found in the Ogallala and Pecos Valley aquifers and that in the deep wells were found in the Trinity aquifer. In the Ogallala, Pecos Valley, Seymour and Gulf Coast aquifers, >60% of observations from shallow wells exceeded the secondary maximum contaminant level (SMCL) for TDS (500 mg L(-1)) in both time periods. In the Trinity aquifer, 72% of deep water quality observations exceeded the SMCL in the 1990s-2000s as compared to 64% observations in the 1960s-1970s. In the Ogallala, Edwards-Trinity (plateau), and Edwards (Balcones Fault Zone) aquifers, extent of salinization decreased significantly (p<0.05) with well depth, indicating surficial salinity sources. Geochemical ratios revealed strong adverse effects of chloride (Cl(-)) and sulfate (SO4(2-)) on groundwater salinization throughout the state. Persistent salinity hotspots were identified in west (southern Ogallala, north-west Edwards-Trinity (plateau) and Pecos Valley aquifers), north central (Trinity-downdip aquifer) and south (southern Gulf Coast aquifer) Texas. In west Texas, mixed cation SO4-Cl facies led to groundwater salinization, as compared to Na-Cl facies in the southern Gulf Coast, and Ca-Na-HCO3 and Na-HCO3 facies transitioning to Na-Cl facies in the Trinity-downdip regions. Groundwater mixing ensuing from cross-formational flow, seepage from saline plumes and playas, evaporative enrichment, and irrigation return flow had led to progressive groundwater salinization in west Texas, as compared to ion-exchange processes in the north-central Texas, and seawater intrusion coupled with salt dissolution and irrigation return flow in the southern Gulf Coast regions.


Gcb Bioenergy | 2017

Assessing the hydrologic and water quality impacts of biofuel-induced changes in land use and management

Yong Chen; Srinivasulu Ale; Nithya Rajan; Clyde L. Munster

The Southern High Plains (SHP) of Texas, where cotton (Gossypium hirsutum L.) is grown in vast acreage, and the Texas Rolling Plains (TRP), which is dominated by an invasive brush, honey mesquite (Prosopis glandulosa) have the potential for biofuel production for meeting the U.S. bioenergy target of 2022. However, a shift in land use from cotton to perennial grasses and a change in land management such as the harvesting of mesquite for biofuel production can significantly affect regional hydrology and water quality. In this study, APEX and SWAT models were integrated to assess the impacts of replacing cotton with Alamo switchgrass (Panicum virgatum L.) and Miscanthus × giganteus in the upstream subwatershed and harvesting mesquite in the downstream subwatershed on water and nitrogen balances in the Double Mountain Fork Brazos watershed in the SHP and TRP regions. Simulated average (1994–2009) annual surface runoff from the baseline cotton areas decreased significantly (P < 0.05) by 88%, and percolation increased by 28% under the perennial grasses scenario compared to the baseline cotton scenario. The soil water content enhanced significantly under the irrigated switchgrass scenario compared to the baseline irrigated cotton scenario from January to April and August to October. However, the soil water content was depleted significantly under the dryland Miscanthus scenario from April to July relative to the baseline dryland cotton scenario. The nitrate‐nitrogen (NO3‐N) and organic‐N loads in surface runoff and NO3‐N leaching to groundwater reduced significantly by 86%, 98%, and 100%, respectively, under the perennial grasses scenario. Similarly, surface runoff, and NO3‐N and organic‐N loads through surface runoff reduced significantly by 98.9%, 99.9%, and 99.5%, respectively, under the post‐mesquite‐harvest scenario. Perennial grasses exhibited superior ethanol production potential compared to mesquite. However, mesquite is an appropriate supplementary bioenergy source in the TRP region because of its standing biomass and rapid regrowth characteristics.


Journal of Soil and Water Conservation | 2017

Simulating hydrologic responses to alternate grazing management practices at the ranch and watershed scales

J.Y. Park; Srinivasulu Ale; W.R. Teague; S.L. Dowhower

Grazing management practices affect watershed hydrology by altering vegetation cover and soil properties. Long-term success of grazing management depends on how well increased forage harvest efficiency is balanced with the need to maintain soil aggregate stability. The overall objective of this study was to assess the impacts of alternate grazing management practices including the light continuous (LC), heavy continuous (HC), adaptive multipaddock (MP) grazing, and no grazing (EX; exclosure) on hydrological processes at the ranch and watershed scales in a rangeland-dominated (71% rangeland) Clear Creek watershed (CCW) in north central Texas using the Soil and Water Assessment Tool (SWAT). Measured data on vegetation, soil physical and hydrological properties, and grazing management at four study ranches within the watershed (two under MP and one each under LC and HC grazing management) were used to parameterize the SWAT model. The SWAT model was calibrated and validated using the measured standing crop biomass and soil moisture data at the study ranches, and streamflow data at the watershed outlet over a 34-year period from 1980 to 2013. At the ranch scale, when the management was changed from the baseline MP grazing to HC grazing, the simulated average (1980 to 2013) annual surface runoff increased within a range of 106% to 117% and water yield increased within a range of 39% to 53%. While surface runoff was found to be a major contributor (52% to 67%) to streamflow under the HC grazing, baseflow was the dominant (55% to 66%) component of streamflow under the MP and EX practices. At the watershed scale, shifting grazing management from the baseline HC grazing to the improved MP grazing decreased surface runoff by about 47%, increased infiltration by 5%, and decreased streamflow by 29.5%. In addition, improvements to grazing decreased the simulated highest annual streamflow over the 1980 to 2013 period from 8.3 m3 s−1 ([293.1 ft3 sec−1] baseline scenario) to 6.2 m3 s−1 ([219 ft3 sec−1] MP grazing). This reduction in the maximum flow has a potential to reduce the risk of flooding downstream. However, these hydrologic responses vary according to the extent of grazing lands in a watershed. Overall, the MP grazing was found to be the best grazing management practice in terms of water conservation, vegetation regrowth, and the potential to reduce flood risk.


Journal of Applied Remote Sensing | 2013

Detection of two intermixed invasive woody species using color infrared aerial imagery and the support vector machine classifier

Mustafa Mirik; Sriroop Chaudhuri; Brady Surber; Srinivasulu Ale; R. James Ansley

Abstract Both the evergreen redberry juniper (Juniperus pinchotii Sudw.) and deciduous honey mesquite (Prosopis glandulosa Torr.) are destructive and aggressive invaders that affect rangelands and grasslands of the southern Great Plains of the United States. However, their current spatial extent and future expansion trends are unknown. This study was aimed at: (1) exploring the utility of aerial imagery for detecting and mapping intermixed redberry juniper and honey mesquite while both are in full foliage using the support vector machine classifier at two sites in north central Texas and, (2) assessing and comparing the mapping accuracies between sites. Accuracy assessments revealed that the overall accuracies were 90% with the associated kappa coefficient of 0.86% and 89% with the associated kappa coefficient of 0.85 for sites 1 and 2, respectively. Z -statistics ( 0.102 < 1.96 ) used to compare the classification results for both sites indicated an insignificant difference between classifications at 95% probability level. In most instances, juniper and mesquite were identified correctly with < 7 % being mistaken for the other woody species. These results indicated that assessment of the current infestation extent and severity of these two woody species in a spatial context is possible using aerial remote sensing imagery.

Collaboration


Dive into the Srinivasulu Ale's collaboration.

Top Co-Authors

Avatar

Kelly R. Thorp

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohamed A. Youssef

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Prasanna H. Gowda

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge