Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Srisin Khusmith is active.

Publication


Featured researches published by Srisin Khusmith.


Genes and Immunity | 2009

Genome-wide SNP-based linkage analysis of tuberculosis in Thais.

Surakameth Mahasirimongkol; Hideki Yanai; Nao Nishida; Chutharut Ridruechai; Ikumi Matsushita; Jun Ohashi; S Summanapan; Norio Yamada; Saiyud Moolphate; C Chuchotaworn; Angkana Chaiprasert; Weerawat Manosuthi; Pacharee Kantipong; S Kanitwittaya; T Sura; Srisin Khusmith; Katsushi Tokunaga; Pathom Sawanpanyalert; Naoto Keicho

Tuberculosis, a potentially fatal infectious disease, affects millions of individuals annually worldwide. Human protective immunity that contains tuberculosis after infection has not been clearly defined. To gain insight into host genetic factors, nonparametric linkage analysis was performed using high-throughput microarray-based single nucleotide polymorphism (SNP) genotyping platform, a GeneChip array comprised 59 860 bi-allelic markers, in 93 Thai families with multiple siblings, 195 individuals affected with tuberculosis. Genotyping revealed a region on chromosome 5q showing suggestive evidence of linkage with tuberculosis (Z(lr) statistics=3.01, logarithm of odds (LOD) score=2.29, empirical P-value=0.0005), and two candidate regions on chromosomes 17p and 20p by an ordered subset analysis using minimum age at onset of tuberculosis as the covariate (maximum LOD score=2.57 and 3.33, permutation P-value=0.0187 and 0.0183, respectively). These results imply a new evidence of genetic risk factors for tuberculosis in the Asian population. The significance of these ordered subset results supports a clinicopathological concept that immunological impairment in the disease differs between young and old tuberculosis patients. The linkage information from a specific ethnicity may provide unique candidate regions for the identification of the susceptibility genes and further help elucidate the immunopathogenesis of tuberculosis.


Aids Research and Therapy | 2010

Effects of CYP2B6 G516T polymorphisms on plasma efavirenz and nevirapine levels when co-administered with rifampicin in HIV/TB co-infected Thai adults.

Sumonmal Uttayamakul; Sirirat Likanonsakul; Weerawat Manosuthi; Nuanjun Wichukchinda; Thareerat Kalambaheti; Emi E. Nakayama; Tatsuo Shioda; Srisin Khusmith

BackgroundCytochrome P450 2B6 (CYP2B6) metabolizes efavirenz and nevirapine, the major core antiretroviral drugs for HIV in Thailand. Rifampicin, a critical component of tuberculosis (TB) therapy is a potent inducer of CYP enzyme activity. Polymorphisms of CYP2B6 and CYP3A4 are associated with altered activity of hepatic enzyme in the liver and pharmacokinetics resulting in treatment efficacy. This study aimed to investigate whether CYP2B6 or CYP3A4 polymorphisms had effects on plasma efavirenz and nevirapine concentrations when co-administered with rifampicin in HIV/TB co-infected Thai adults.ResultsWe studied 124 rifampicin recipients with concurrent HIV-1/TB coinfection, receiving efavirenz (600 mg/day) (n = 65) or nevirapine (400 mg/day) (n = 59) based antiretroviral therapy (ART). The frequencies of GG, GT and TT genotypes of CYP2B6-G516T were 38.46%, 47.69% and 13.85% in efavirenz group and 44.07%, 52.54% and 3.39% in nevirapine group, respectively. The mean 12-hour post-dose plasma efavirenz concentration in patients with TT genotype at weeks 6 and 12 of ART and 1 month after rifampicin discontinuation (10.97 ± 2.32, 13.62 ± 4.21 and 8.48 ± 1.30 mg/L, respectively) were significantly higher than those with GT (3.43 ± 0.29, 3.35 ± 0.27 and 3.21 ± 0.22 mg/L, respectively) (p < 0.0001) or GG genotypes (2.88 ± 0.33, 2.45 ± 0.26 and 2.08 ± 0.16 mg/L, respectively) (p < 0.0001). Likewise, the mean 12-hour post-dose plasma nevirapine concentration in patients carrying TT genotype at weeks 6 and 12 of ART and 1 month after rifampicin discontinuation (14.09 ± 9.49, 7.94 ± 2.76 and 9.44 ± 0.17 mg/L, respectively) tended to be higher than those carrying GT (5.65 ± 0.54, 5.58 ± 0.48 and 7.03 ± 0.64 mg/L, respectively) or GG genotypes (5.42 ± 0.48, 5.34 ± 0.50 and 6.43 ± 0.64 mg/L, respectively) (p = 0.003, p = 0.409 and p = 0.448, respectively). Compared with the effects of CYP2B6- 516TT genotype, we could observe only small effects of rifampicin on plasma efavirenz and nevirapine levels. After 12 weeks of both drug regimens, there was a trend towards higher percentage of patients with CYP2B6-TT genotype who achieved HIV-1 RNA levels <50 copies/mL compared to those with GT or GG genotypes. This is the first report to demonstrate the effects of CYP2B6 G516T polymorphisms on plasma efavirenz and nevirapine concentrations when co-administered with rifampicin in HIV/TB co-infected Thai adults.ConclusionsCYP2B6-TT genotype had impact on plasma efavirenz and nevirapine concentrations, while rifampicin co-administration had only small effects.


Journal of Immunology | 2005

Are Extensive T Cell Epitope Polymorphisms in the Plasmodium falciparum Circumsporozoite Antigen, a Leading Sporozoite Vaccine Candidate, Selected by Immune Pressure?

Chutima Kumkhaek; Kooruethai Phra-ek; Laurent Rénia; Pratap Singhasivanon; Sornchai Looareesuwan; Chakrit Hirunpetcharat; Nicholas J. White; Alan Brockman; Anne Charlotte Grüner; Nicolas Lebrun; Ali Alloueche; François Nosten; Srisin Khusmith; Georges Snounou

Protective cellular immune responses depend on MHC presentation of pathogen-derived Ag fragments. MHC diversity renders this process sensitive to point mutations coding for altered amino acid sequence of the short target Ag-derived peptides epitopes. Thus, in a given host, a pathogen with an altered epitope sequence will be more likely to escape detection and elimination by the immune system. At a population level, selection by immune pressure will increase the likelihood of polymorphism in important pathogen antigenic epitopes. This mechanism of immune evasion is found in viruses and other pathogens. The detection of polymorphic hot spots in an Ag is often taken as a strong indication of its role in protective immunity. We provide evidence that polymorphisms in the T cell epitopes of a malaria vaccine candidate are unlikely to have been selected by immune pressure in the human host.


Malaria Journal | 2008

Polymorphism patterns in Duffy-binding protein among Thai Plasmodium vivax isolates

Panita Gosi; Srisin Khusmith; Thareerat Khalambaheti; David E. Lanar; Kurt Schaecher; Mark M. Fukuda; Scott R Miller

BackgroundThe Duffy-binding protein II of Plasmodium vivax (PvDBPII) has been considered as an attractive target for vaccine-mediated immunity despite a possible highly polymorphic nature. Among seven PvDBP domains, domain II has been shown to exhibit a high rate of nonsynonymous polymorphism, which has been suggested to be a potential immune (antibody binding) evasion mechanism. This study aimed to determine the extent of genetic polymorphisms and positive natural selection at domain II of the PvDBP gene among a sampling of Thai P. vivax isolates.MethodsThe PvDBPII gene was PCR amplified and the patterns of polymorphisms were characterized from 30 Thai P. vivax isolates using DNA cloning and sequencing. Phylogenetic analysis of the sequences and positive selection were done using DnaSP ver 4.0 and MEGA ver 4.0 packages.ResultsThis study demonstrated a high rate of nonsynonymous polymorphism. Using Sal I as the reference strain, a total of 30 point-mutations were observed in the PvDBPII gene among the set of Thai P. vivax isolates, of which 25 nonsynonymous and five synonymous were found. The highest frequency of polymorphism was found in five variant amino acids (residues D384G, R390H, L424I, W437R, I503K) with the variant L424I having the highest frequency. The difference between the rates of nonsynonymous and synonymous mutations estimated by the Nei and Gojoboris method suggested that PvDBPII antigen appears to be under selective pressure. Phylogenetic analysis of PvDBPII Thai P. vivax isolates to others found internationally demonstrated six distinct allele groups. Allele groups 4 and 6 were unique to Thailand.ConclusionPolymorphisms within PvDBPII indicated that Thai vivax malaria parasites are genetically diverse. Phylogenetic analysis of DNA sequences using the Neighbour-Joining method demonstrated that Thai isolates shared distinct alleles with P. vivax isolates from different geographical areas. The study reported here will be valuable for the development of PvDBPII-based malaria vaccine.


Immunogenetics | 2010

Haplotypes of IL12B promoter polymorphisms condition susceptibility to severe malaria and functional changes in cytokine levels in Thai adults

Chintana Phawong; Collins Ouma; Piyatida Tangteerawatana; Jarinee Thongshoob; Tom Were; Yuvadee Mahakunkijcharoen; Duangrurdee Wattanasirichaigoon; Douglas J. Perkins; Srisin Khusmith

Polymorphic variability in immune response genes, such as IL12B, encoding the IL-12p40 subunit is associated with susceptibility to severe malaria in African populations. Since the role of genetic variation in conditioning severe malaria in Thai adults is largely unexplored, the functional association between IL12B polymorphisms [i.e. IL12Bpro (rs17860508) and IL12B 3′ UTR T/G (rs3212227)], severe malaria and cytokine production was examined in patients with Plasmodium falciparum infections (n = 355) recruited from malaria endemic areas along the Thai–Myanmar border in northwest Thailand. Circulating IL-12p40 (p = 0.049) and IFN-γ (p = 0.051) were elevated in patients with severe malaria, while only IL-12p40 was significantly higher in severe malaria patients with hyperparasitaemia (p = 0.046). Carriage of the IL12Bpro1.1 genotype was associated with enhanced severity of malaria (OR, 2.34; 95% CI, 0.94–5.81; p = 0.066) and hyperparasitaemia (OR, 3.42; 95% CI, 1.17–9.87; p = 0.025) relative to the IL12Bpro2.2 genotype (wild type). Individuals with the IL12Bpro1.1 genotype also had the lowest IL-12p40 (p = 0.002) and the highest IFN-γ (p = 0.004) levels. Construction of haplotypes revealed that carriage of the IL12Bpro-2/3′ UTR-T haplotype was associated with protection against severe malaria (OR, 0.51; 95% CI, 0.29–0.90; p = 0.020) and reduced circulating IFN-γ (p = 0.06). Thus, genotypic and haplotypic variation at IL12Bpro and IL12B 3′ UTR in this population influences susceptibility to severe malaria and functional changes in circulating IL-12p40 and IFN-γ levels. Results presented here suggest that protection against severe malaria in Thai adults is associated with genotypic variants that condition enhanced IL-12p40 and reduced IFN-γ levels.


International Journal for Parasitology | 1991

Specific monoclonal antibodies to Opisthorchis viverrini

Wanpen Chaicumpa; Yuwaporn Ruangkunaporn; Thareerat Kalambaheti; Suvit Limavongpranee; Viroj Kitikoon; Srisin Khusmith; Swangjai Pungpak; Manas Chongsa-nguan; S. Sornmani

A Balb/c mouse was immunized with a crude soluble antigen of Opisthorchis viverrini adult worms (OVAA) over a period of 7 months. Spleen cells from the immune mouse were fused with Sp2/0 myeloma cells. Among the 264 tissue culture wells containing the fused cells, cells of 96 wells (36%) produced antibodies to the immunizing agent. Antibodies produced by cells in several wells reacted with antigens from other species of parasite. Cells of 17 wells produced antibodies specific only to OVAA, thus cells from three representative wells were cloned by limiting dilution. Hybrids obtained produced antibodies which could be classified according to their tissue specificities into three groups. The first group of antibodies reacted strongly to the worm integument and weakly with the muscles while those belonging to the second group reacted only to muscles of the worms. The monoclonal antibodies of the third group gave a positive reaction to both muscles and tegument.


Malaria Journal | 2009

Sequence variation of PfEMP1-DBLα in association with rosette formation in Plasmodium falciparum isolates causing severe and uncomplicated malaria

Natharinee Horata; Thareerat Kalambaheti; Alister Craig; Srisin Khusmith

BackgroundRosetting and cytoadherence of Plasmodium falciparum- infected red blood cells have been associated with severity of malaria. ICAM-1 and CD36 are the main host cell receptors, while PfEMP1-DBLα is a major parasite ligand, which can contribute to rosette formation. This study is aimed at demonstrating whether the highly polymorphic PfEMP1-DBLα sequences occurring among Thai isolates causing severe and uncomplicated malaria are associated with their ability to form rosettes and reflected the clinical outcome of the patients.MethodsTwo hundred and ninety five PfEMP1-DBLα sequences from Thai clinical isolates causing severe and uncomplicated malaria were evaluated by sequencing and direct comparison using the specific text string analysis functions in Microsoft Excel and Perl. The relationships between the PfEMP1-DBLα sequences were also analysed by network analysis. The binding abilities of parasitized red blood cells (PRBCs) to CD36, wild type ICAM-1, ICAM-1Kilifi and ICAM-1S22/A under static condition were included.ResultsTwo hundred and eighty one non-identical amino acid sequences were identified (< 95% sequence identity). When the distributions of semi-conserved features (PoLV1–4 and sequence group) within the rosetting domain PfEMP1-DBLα were observed, close similarity was found between isolates from the two disease groups. The sequence group 1 representing uncomplicated malaria was significantly different from the sequence group 3 representing the majority of severe malaria (p = 0.027). By using a simple non-phylogenetic approach to visualize the sharing of polymorphic blocks (position specific polymorphic block, PSPB) and cys/PoLV among DBLα sequences, the sequence group 1 was split from the other five sequence groups. The isolates belonging to sequence group 5 gave the highest mean rosetting rate (21.31%). However, within sequence group 2 and group 6, the isolates causing severe malaria had significantly higher rosetting rate than those causing uncomplicated malaria (p = 0.014, p = 0.007, respectively).ConclusionThis is the first report of PfEMP1-DBLα analysis in clinical Thai isolates using semi-conserved features (cys/PoLV and PSPBs). The cys/PoLV group 5 gave the highest rosetting rate. PfEMP1-DBLα domains in Thai isolates are highly diverse, however, clinical isolates from severe and uncomplicated malaria shared common sequences.


Genes and Immunity | 2010

Association analysis of susceptibility candidate region on chromosome 5q31 for tuberculosis

Chutharut Ridruechai; Surakameth Mahasirimongkol; J Phromjai; Hideki Yanai; Nao Nishida; Ikumi Matsushita; Jun Ohashi; Norio Yamada; Saiyud Moolphate; S Summanapan; C Chuchottaworn; Weerawat Manosuthi; Pacharee Kantipong; S Kanitvittaya; Pathom Sawanpanyalert; Naoto Keicho; Srisin Khusmith; Katsushi Tokunaga

Chromosome 5q31 spans the T helper (Th) 2-related cytokine gene cluster, which is potentially important in Th1/Th2 immune responses. The chromosome 5q23.2–31.3 has been recently identified as a region with suggestive evidence of linkage to tuberculosis in the Asian population. With the aim of fine-mapping a putative tuberculosis susceptibility locus, we investigated a family-based association test between the dense single nucleotide polymorphism (SNP) markers within chromosome 5q31 and tuberculosis in 205 Thai trio families. Of these, 75 SNPs located within candidate genes covering SLC22A4, SLC22A5, IRF1, IL5, RAD50, IL13, IL4, KIF3A and SEPT8 were genotyped using the DigiTag2 assay. Association analysis revealed the most significant association with tuberculosis in haplotypes comprising SNPs rs274559, rs274554 and rs274553 of SLC22A5 gene (PGlobal=2.02 × 10−6), which remained significant after multiple testing correction. In addition, two haplotypes within the SLC22A4 and KIF3A region were associated with tuberculosis. Haplotypes of SLC22A5 were significantly associated with the expression levels of RAD50 and IL13. The results show that the variants carried by the haplotypes of SLC22A4, SLC22A5 and KIF3A region potentially contribute to tuberculosis susceptibility among the Thai population.


Journal of Clinical Microbiology | 2016

Development of Rapid Enzyme-Linked Immunosorbent Assays for Detection of Antibodies to Burkholderia pseudomallei

Vichaya Suttisunhakul; Vanaporn Wuthiekanun; Paul J. Brett; Srisin Khusmith; Nicholas P. J. Day; Mary N. Burtnick; Direk Limmathurotsakul; Narisara Chantratita

ABSTRACT Burkholderia pseudomallei, the causative agent of melioidosis, is an environmental bacillus found in northeast Thailand. The mortality rate of melioidosis is ∼40%. An indirect hemagglutination assay (IHA) is used as a reference serodiagnostic test; however, it has low specificity in areas where the background seropositivity of healthy people is high. To improve assay specificity and reduce the time for diagnosis, four rapid enzyme-linked immunosorbent assays (ELISAs) were developed using two purified polysaccharide antigens (O-polysaccharide [OPS] and 6-deoxyheptan capsular polysaccharide [CPS]) and two crude antigens (whole-cell [WC] antigen and culture filtrate [CF] antigen) of B. pseudomallei. The ELISAs were evaluated using serum samples from 141 culture-confirmed melioidosis patients from Thailand along with 188 healthy donors from Thailand and 90 healthy donors from the United States as controls. The areas under receiver operator characteristic curves (AUROCC) using Thai controls were high for the OPS-ELISA (0.91), CF-ELISA (0.91), and WC-ELISA (0.90), while those of CPS-ELISA (0.84) and IHA (0.72) were lower. AUROCC values using U.S. controls were comparable to those of the Thai controls for all ELISAs except IHA (0.93). Using a cutoff optical density (OD) of 0.87, the OPS-ELISA had a sensitivity of 71.6% and a specificity of 95.7% for Thai controls; for U.S. controls, specificity was 96.7%. An additional 120 serum samples from tuberculosis, scrub typhus, or leptospirosis patients were evaluated in all ELISAs and resulted in comparable or higher specificities than using Thai healthy donors. Our findings suggest that antigen-specific ELISAs, particularly the OPS-ELISA, may be useful for serodiagnosis of melioidosis in areas where it is endemic and nonendemic.


Malaria Journal | 2009

IL4 gene polymorphism and previous malaria experiences manipulate anti-Plasmodium falciparum antibody isotype profiles in complicated and uncomplicated malaria

Piyatida Tangteerawatana; Hedvig Perlmann; Masashi Hayano; Thareerat Kalambaheti; Marita Troye-Blomberg; Srisin Khusmith

BackgroundThe IL4-590 gene polymorphism has been shown to be associated with elevated levels of anti-Plasmodium falciparum IgG antibodies and parasite intensity in the malaria protected Fulani of West Africa. This study aimed to investigate the possible impact of IL4-590C/T polymorphism on anti-P. falciparum IgG subclasses and IgE antibodies levels and the alteration of malaria severity in complicated and uncomplicated malaria patients with or without previous malaria experiences.MethodsAnti-P.falciparum IgG subclasses and IgE antibodies in plasma of complicated and uncomplicated malaria patients with or without previous malaria experiences were analysed using ELISA. IL4-590 polymorphisms were genotyped using RFLP-PCR. Statistical analyses of the IgG subclass levels were done by Oneway ANOVA. Genotype differences were tested by Chi-squared test.ResultsThe IL4-590T allele was significantly associated with anti-P. falciparum IgG3 antibody levels in patients with complicated (P = 0.031), but not with uncomplicated malaria (P = 0.622). Complicated malaria patients with previous malaria experiences carrying IL4-590TT genotype had significantly lower levels of anti-P. falciparum IgG3 (P = 0.0156), while uncomplicated malaria patients with previous malaria experiences carrying the same genotype had significantly higher levels (P = 0.0206) compared to their IL4-590 counterparts. The different anti-P. falciparum IgG1 and IgG3 levels among IL4 genotypes were observed. Complicated malaria patients with previous malaria experiences tended to have lower IgG3 levels in individuals carrying TT when compared to CT genotypes (P = 0.075). In contrast, complicated malaria patients without previous malaria experiences carrying CC genotype had significantly higher anti-P. falciparum IgG1 than those carrying either CT or TT genotypes (P = 0.004, P = 0.002, respectively).ConclusionThe results suggest that IL4-590C or T alleles participated differently in the regulation of anti-malarial antibody isotype profiles in primary and secondary malaria infection and, therefore, could play an important role in alteration of malaria severity.

Collaboration


Dive into the Srisin Khusmith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pacharee Kantipong

Thailand Ministry of Public Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge