Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Srivas Chennu is active.

Publication


Featured researches published by Srivas Chennu.


The Journal of Neuroscience | 2013

Expectation and Attention in Hierarchical Auditory Prediction

Srivas Chennu; Valdas Noreika; David Gueorguiev; Alejandro Blenkmann; Silvia Kochen; Agustín Ibáñez; Adrian M. Owen; Tristan A. Bekinschtein

Hierarchical predictive coding suggests that attention in humans emerges from increased precision in probabilistic inference, whereas expectation biases attention in favor of contextually anticipated stimuli. We test these notions within auditory perception by independently manipulating top-down expectation and attentional precision alongside bottom-up stimulus predictability. Our findings support an integrative interpretation of commonly observed electrophysiological signatures of neurodynamics, namely mismatch negativity (MMN), P300, and contingent negative variation (CNV), as manifestations along successive levels of predictive complexity. Early first-level processing indexed by the MMN was sensitive to stimulus predictability: here, attentional precision enhanced early responses, but explicit top-down expectation diminished it. This pattern was in contrast to later, second-level processing indexed by the P300: although sensitive to the degree of predictability, responses at this level were contingent on attentional engagement and in fact sharpened by top-down expectation. At the highest level, the drift of the CNV was a fine-grained marker of top-down expectation itself. Source reconstruction of high-density EEG, supported by intracranial recordings, implicated temporal and frontal regions differentially active at early and late levels. The cortical generators of the CNV suggested that it might be involved in facilitating the consolidation of context-salient stimuli into conscious perception. These results provide convergent empirical support to promising recent accounts of attention and expectation in predictive coding.


PLOS ONE | 2012

Detecting Awareness in the Vegetative State: Electroencephalographic Evidence for Attempted Movements to Command

Damian Cruse; Srivas Chennu; Davinia Fernández-Espejo; William L. Payne; G. Bryan Young; Adrian M. Owen

Patients in the Vegetative State (VS) do not produce overt motor behavior to command and are therefore considered to be unaware of themselves and of their environments. However, we recently showed that high-density electroencephalography (EEG) can be used to detect covert command-following in some VS patients. Due to its portability and inexpensiveness, EEG assessments of awareness have the potential to contribute to a standard clinical protocol, thus improving diagnostic accuracy. However, this technique requires refinement and optimization if it is to be used widely as a clinical tool. We asked a patient who had been repeatedly diagnosed as VS for 12-years to try to move his left and right hands, between periods of rest, while EEG was recorded from four scalp electrodes. We identified appropriate and statistically reliable modulations of sensorimotor beta rhythms following commands to try to move, which could be significantly classified at a single-trial level. These reliable effects indicate that the patient attempted to follow the commands, and was therefore aware, but was unable to execute an overtly discernable action. The cognitive demands of this novel task are lower than those used previously and, crucially, allow for awareness to be determined on the basis of a 20-minute EEG recording made with only four electrodes. This approach makes EEG assessments of awareness clinically viable, and therefore has potential for inclusion in a standard assessment of awareness in the VS.


Neurology | 2012

Relationship between etiology and covert cognition in the minimally conscious state.

Damian Cruse; Srivas Chennu; Camille Chatelle; Davinia Fernández-Espejo; Tristan A. Bekinschtein; John D. Pickard; Steven Laureys; Adrian M. Owen

Objectives: Functional neuroimaging has shown that the absence of externally observable signs of consciousness and cognition in severely brain-injured patients does not necessarily indicate the true absence of such abilities. However, relative to traumatic brain injury, nontraumatic injury is known to be associated with a reduced likelihood of regaining overtly measurable levels of consciousness. We investigated the relationships between etiology and both overt and covert cognitive abilities in a group of patients in the minimally conscious state (MCS). Methods: Twenty-three MCS patients (15 traumatic and 8 nontraumatic) completed a motor imagery EEG task in which they were required to imagine movements of their right-hand and toes to command. When successfully performed, these imagined movements appear as distinct sensorimotor modulations, which can be used to determine the presence of reliable command-following. The utility of this task has been demonstrated previously in a group of vegetative state patients. Results: Consistent and robust responses to command were observed in the EEG of 22% of the MCS patients (5 of 23). Etiology had a significant impact on the ability to successfully complete this task, with 33% of traumatic patients (5 of 15) returning positive EEG outcomes compared with none of the nontraumatic patients (0 of 8). Conclusions: The overt behavioral signs of awareness (measured with the Coma Recovery Scale–Revised) exhibited by nontraumatic MCS patients appear to be an accurate reflection of their covert cognitive abilities. In contrast, one-third of a group of traumatically injured patients in the MCS possess a range of high-level cognitive faculties that are not evident from their overt behavior.


Brain Injury | 2012

Brain–computer interfacing in disorders of consciousness

Camille Chatelle; Srivas Chennu; Quentin Noirhomme; Damian Cruse; Adrian M. Owen; Steven Laureys

Background: Recent neuroimaging research has strikingly demonstrated the existence of covert awareness in some patients with disorders of consciousness (DoC). These findings have highlighted the potential for the development of simple brain–computer interfaces (BCI) as a diagnosis in behaviourally unresponsive patients. Objectives: This study here reviews current EEG-based BCIs that hold potential for assessing and eventually assisting patients with DoC. It highlights key areas for further development that might eventually make their application feasible in this challenging patient group. Methods: The major types of BCIs proposed in the literature are considered, namely those based on the P3 potential, sensorimotor rhythms, steady state oscillations and slow cortical potentials. In each case, a brief overview of the relevant literature is provided and then their relative merits for BCI applications in DoC are considered. Results: A range of BCI designs have been proposed and tested for enabling communication in fully conscious, paralysed patients. Although many of these have potential applicability for patients with DoC, they share some key challenges that need to be overcome, including limitations of stimulation modality, feedback, user training and consistency. Conclusion: Future work will need to address the technical and practical challenges facing reliable implementation at the patients bedside.


PLOS Computational Biology | 2014

Spectral Signatures of Reorganised Brain Networks in Disorders of Consciousness

Srivas Chennu; Paola Finoia; Evelyn Kamau; Judith Allanson; Guy B. Williams; Martin M. Monti; Valdas Noreika; Aurina Arnatkeviciute; Andrés Canales-Johnson; Francisco Olivares; Daniela Cabezas-Soto; David K. Menon; John D. Pickard; Adrian M. Owen; Tristan A. Bekinschtein

Theoretical advances in the science of consciousness have proposed that it is concomitant with balanced cortical integration and differentiation, enabled by efficient networks of information transfer across multiple scales. Here, we apply graph theory to compare key signatures of such networks in high-density electroencephalographic data from 32 patients with chronic disorders of consciousness, against normative data from healthy controls. Based on connectivity within canonical frequency bands, we found that patient networks had reduced local and global efficiency, and fewer hubs in the alpha band. We devised a novel topographical metric, termed modular span, which showed that the alpha network modules in patients were also spatially circumscribed, lacking the structured long-distance interactions commonly observed in the healthy controls. Importantly however, these differences between graph-theoretic metrics were partially reversed in delta and theta band networks, which were also significantly more similar to each other in patients than controls. Going further, we found that metrics of alpha network efficiency also correlated with the degree of behavioural awareness. Intriguingly, some patients in behaviourally unresponsive vegetative states who demonstrated evidence of covert awareness with functional neuroimaging stood out from this trend: they had alpha networks that were remarkably well preserved and similar to those observed in the controls. Taken together, our findings inform current understanding of disorders of consciousness by highlighting the distinctive brain networks that characterise them. In the significant minority of vegetative patients who follow commands in neuroimaging tests, they point to putative network mechanisms that could support cognitive function and consciousness despite profound behavioural impairment.


NeuroImage: Clinical | 2013

Dissociable endogenous and exogenous attention in disorders of consciousness

Srivas Chennu; Paola Finoia; Evelyn Kamau; Martin M. Monti; Judith Allanson; John D. Pickard; Adrian M. Owen; Tristan A. Bekinschtein

Recent research suggests that despite the seeming inability of patients in vegetative and minimally conscious states to generate consistent behaviour, some might possess covert awareness detectable with functional neuroimaging. These findings motivate further research into the cognitive mechanisms that might support the existence of consciousness in these states of profound neurological dysfunction. One of the key questions in this regard relates to the nature and capabilities of attention in patients, known to be related to but distinct from consciousness. Previous assays of the electroencephalographic P300 marker of attention have demonstrated its presence and potential clinical value. Here we analysed data from 21 patients and 8 healthy volunteers collected during an experimental task designed to engender exogenous or endogenous attention, indexed by the P3a and P3b components, respectively, in response to a pair of word stimuli presented amongst distractors. Remarkably, we found that the early, bottom-up P3a and the late, top-down P3b could in fact be dissociated in a patient who fitted the behavioural criteria for the vegetative state. In juxtaposition with healthy volunteers, the patients responses suggested the presence of a relatively high level of attentional abilities despite the absence of any behavioural indications thereof. Furthermore, we found independent evidence of covert command following in the patient, as measured by functional neuroimaging during tennis imagery. Three other minimally conscious patients evidenced non-discriminatory bottom-up orienting, but no top-down engagement of selective attentional control. Our findings present a persuasive case for dissociable attentional processing in behaviourally unresponsive patients, adding to our understanding of the possible levels and applications of consequent conscious awareness.


Journal of Cognitive Neuroscience | 2009

The attentional blink reveals serial working memory encoding: Evidence from virtual and human event-related potentials

Patrick Craston; Bradley P. Wyble; Srivas Chennu; Howard Bowman

Observers often miss a second target (T2) if it follows an identified first target item (T1) within half a second in rapid serial visual presentation (RSVP), a finding termed the attentional blink. If two targets are presented in immediate succession, however, accuracy is excellent (Lag 1 sparing). The resource sharing hypothesis proposes a dynamic distribution of resources over a time span of up to 600 msec during the attentional blink. In contrast, the ST2 model argues that working memory encoding is serial during the attentional blink and that, due to joint consolidation, Lag 1 is the only case where resources are shared. Experiment 1 investigates the P3 ERP component evoked by targets in RSVP. The results suggest that, in this context, P3 amplitude is an indication of bottom–up strength rather than a measure of cognitive resource allocation. Experiment 2, employing a two-target paradigm, suggests that T1 consolidation is not affected by the presentation of T2 during the attentional blink. However, if targets are presented in immediate succession (Lag 1 sparing), they are jointly encoded into working memory. We use the ST2 models neural network implementation, which replicates a range of behavioral results related to the attentional blink, to generate “virtual ERPs” by summing across activation traces. We compare virtual to human ERPs and show how the results suggest a serial nature of working memory encoding as implied by the ST2 model.


Cerebral Cortex | 2015

Auditory Feedback Differentially Modulates Behavioral and Neural Markers of Objective and Subjective Performance When Tapping to Your Heartbeat

Andrés Canales-Johnson; Carolina Silva; David Huepe; Álvaro Rivera-Rei; Valdas Noreika; María del Carmen García; Walter Silva; Carlos Ciraolo; Esteban Vaucheret; Lucas Sedeño; Blas Couto; Lucila Kargieman; Fabricio Baglivo; Mariano Sigman; Srivas Chennu; Agustín Ibáñez; Eugenio Rodriguez; Tristan A. Bekinschtein

Interoception, the perception of our body internal signals, plays a key role in maintaining homeostasis and guiding our behavior. Sometimes, we become aware of our body signals and use them in planning and strategic thinking. Here, we show behavioral and neural dissociations between learning to follow ones own heartbeat and metacognitive awareness of ones performance, in a heartbeat-tapping task performed before and after auditory feedback. The electroencephalography amplitude of the heartbeat-evoked potential in interoceptive learners, that is, participants whose accuracy of tapping to their heartbeat improved after auditory feedback, was higher compared with non-learners. However, an increase in gamma phase synchrony (30–45 Hz) after the heartbeat auditory feedback was present only in those participants showing agreement between objective interoceptive performance and metacognitive awareness. Source localization in a group of participants and direct cortical recordings in a single patient identified a network hub for interoceptive learning in the insular cortex. In summary, interoceptive learning may be mediated by the right insular response to the heartbeat, whereas metacognitive awareness of learning may be mediated by widespread cortical synchronization patterns.


Frontiers in Psychology | 2012

Arousal Modulates Auditory Attention and Awareness: Insights from Sleep, Sedation, and Disorders of Consciousness

Srivas Chennu; Tristan A. Bekinschtein

The interplay between attention and consciousness is frequently tested in altered states of consciousness, including transitions between stages of sleep and sedation, and in pathological disorders of consciousness (DoC; the vegetative and minimally conscious states; VS and MCS). One of the most widely used tasks to assess cognitive processing in this context is the auditory oddball paradigm, where an infrequent change in a sequence of sounds elicits, in awake subjects, a characteristic EEG event-related potential called the mismatch negativity, followed by the classic P300 wave. The latter is further separable into the slightly earlier, anterior P3a and the later, posterior P3b, thought to be linked to task-irrelevant “bottom-up” and task-oriented “top-down” attention, respectively. We discuss here the putative dissociations between attention and awareness in DoC, sedation and sleep, bearing in mind the recently emerging evidence from healthy volunteers and patients. These findings highlight the neurophysiological and cognitive parallels (and differences) across these three distinct variations in levels of consciousness, and inform the theoretical framework for interpreting the role of attention therein.


PLOS Computational Biology | 2016

Brain Connectivity Dissociates Responsiveness from Drug Exposure during Propofol-Induced Transitions of Consciousness

Srivas Chennu; Stuart O’Connor; Ram Adapa; David K. Menon; Tristan A. Bekinschtein

Accurately measuring the neural correlates of consciousness is a grand challenge for neuroscience. Despite theoretical advances, developing reliable brain measures to track the loss of reportable consciousness during sedation is hampered by significant individual variability in susceptibility to anaesthetics. We addressed this challenge using high-density electroencephalography to characterise changes in brain networks during propofol sedation. Assessments of spectral connectivity networks before, during and after sedation were combined with measurements of behavioural responsiveness and drug concentrations in blood. Strikingly, we found that participants who had weaker alpha band networks at baseline were more likely to become unresponsive during sedation, despite registering similar levels of drug in blood. In contrast, phase-amplitude coupling between slow and alpha oscillations correlated with drug concentrations in blood. Our findings highlight novel markers that prognosticate individual differences in susceptibility to propofol and track drug exposure. These advances could inform accurate drug titration and brain state monitoring during anaesthesia.

Collaboration


Dive into the Srivas Chennu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian M. Owen

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Damian Cruse

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge