Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Srujan Marepally is active.

Publication


Featured researches published by Srujan Marepally.


Journal of Controlled Release | 2013

Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo.

Pinaki R. Desai; Srujan Marepally; Apurva R. Patel; Chandrashekhar Voshavar; Arabinda Chaudhuri; Mandip Singh

The barrier properties of the skin pose a significant but not insurmountable obstacle for development of new effective anti-inflammatory therapies. The objective of this study was to design and evaluate therapeutic efficacy of anti-nociception agent Capsaicin (Cap) and anti-TNFα siRNA (siTNFα) encapsulated cyclic cationic head lipid-polymer hybrid nanocarriers (CyLiPns) against chronic skin inflammatory diseases. Physico-chemical characterizations including hydrodynamic size, surface potential and entrapment efficacies of CyLiPns were found to be 163±9nm, 35.14±8.23mV and 92% for Cap, respectively. In vitro skin distribution studies revealed that CyLiPns could effectively deliver FITC-siRNA up to 360μm skin depth. Further, enhanced (p<0.001) Cap permeation from CyLiPns was observed compared to Capsaicin-Solution and Capzasin-HP. Therapeutic efficacies of CyLiPns were assessed using imiquamod-induced psoriatic plaque like model. CyLiPns carrying both Cap and siTNFα showed significant reduced expression of TNFα, NF-κB, IL-17, IL-23 and Ki-67 genes compared to either drugs alone (p<0.05) and were in close comparison with Topgraf®. Collectively these findings support our notion that novel cationic lipid-polymer hybrid nanoparticles can efficiently carry siTNFα and Cap into deeper dermal milieu and Cap with a combination of siTNFα shows synergism in treating skin inflammation.


Journal of Controlled Release | 2013

Inhalation delivery of Telmisartan enhances intratumoral distribution of nanoparticles in lung cancer models.

Chandraiah Godugu; Apurva R. Patel; Ravi Doddapaneni; Srujan Marepally; Tanise Jackson; Mandip Singh

The purpose of the present study was to evaluate the effect of Telmisartan (Tel) and Losartan (Los) on nanoparticle intratumoral distribution and anticancer effects in lung cancer. A549 lung tumor cells were orthotopically and metastatically administered to Nu/nu mice. Fluorescent polystyrene nanoparticles (FPNPs, size ~200 nm) beads were used to study their intratumoral distribution after Tel and Los treatments. Animals were administered with FPNPs and after 2h, FPNPs intratumoral distribution was studied by fluorescent microscopy. Tel (~1.12 mg/kg) and Los (~4.5mg/kg) were administered by inhalation delivery at alternative days for 4 weeks to tumor bearing animals. Collagen-1, transforming growth factor beta 1 (TGF-β1), cleaved caspase-3, Vimentin and E-Cadherin expressions were studied by western blotting. To correlate the AT1 receptor blockage to anticancer effects, VEGF levels and microvessel densities (MVD) were quantified. Los and Tel treated group resulted in the 5.33 and 14.33 fold increase respectively in the FPNPs intratumoral distribution as compared to the controls. Tel treatment attenuated 2.23 and 1.70 fold Collagen 1 expression compared to untreated control and Los groups, respectively. Further, in Tel and Los treated groups, the TGF-β1 active levels were significantly (p<0.05) decreased. Tel (at four times less dose) was 1.89 and 1.92 fold superior in anticancer activity to Los respectively in A549 orthotopic and metastatic tumor models (p<0.05) when given by inhalation route. Tel, by virtue of its dual pharmacophoric nature could be an ideal candidate for combination therapy to improve the nanoparticle intratumoral distribution and anticancer effects.


Nanomedicine: Nanotechnology, Biology and Medicine | 2014

Topical administration of dual siRNAs using fusogenic lipid nanoparticles for treating psoriatic-like plaques

Srujan Marepally; Cedar H. A. Boakye; Apurva R. Patel; Chandraiah Godugu; Ravi Doddapaneni; Pinaki R. Desai; Mandip Singh

AIM Psoriasis is a chronic autoimmune skin disorder with substantial negative impact on the patients quality of life. The present study was carried out to demonstrate the efficiency of a novel topical delivery system in the transport of two siRNAs for the treatment of psoriatic-like plaques. MATERIALS & METHODS We designed and developed a novel fusogenic nucleic acid lipid particle (F-NALP) system containing two therapeutic nucleic acids, anti-STAT3 siRNA (siSTAT3) and anti-TNF-α siRNA (siTNF-α). Novel cationic amphiphilic lipid with oleyl chains was synthesized and used in the nanocarrier system. Therapeutic efficacies of F-NALPs were assessed using an imiquimod-induced psoriatic-like plaque model. RESULTS Hydrodynamic size and surface potential of F-NALPs were 102 ± 6 nm and 32.14 ± 6.21 mV, respectively. F-NALPs delivered fluorescein isothiocyanate-siRNA to a skin depth of 360 µm. F-NALPs carrying siSTAT3 and siTNF-α significantly (p < 0.05) reduced expression of STAT3 and TNF-α mRNAs and IL-23 and Ki-67 proteins compared with solution, and was superior in comparison with Topgraf(®) (GlaxoSmithKline Pharmaceuticals Limited, Maharashtra, India). CONCLUSION Our observations demonstrate that F-NALPs can efficiently carry siSTAT3 and siTNF-α into the dermis and combination of the two nucleic acids can synergistically treat psoriatic-like plaques.


Journal of Controlled Release | 2014

Cationic lipid guided short-hairpin RNA interference of annexin A2 attenuates tumor growth and metastasis in a mouse lung cancer stem cell model

Terrick Andey; Srujan Marepally; Apurva R. Patel; Tanise Jackson; Shubhashish Sarkar; Malaney R. O'Connell; Rakesh C Reddy; Srikumar Chellappan; Pomila Singh; Mandip Singh

The role of side populations (SP) or cancer stem-like cells (CSC) in promoting the resistance phenotype presents a viable anticancer target. Human-derived H1650 SP cells over-express annexin A2 (AnxA2) and SOX2, and are resistant to conventional cytotoxic chemotherapeutics. AnxA2 and SOX2 bind to proto-oncogenes, c-Myc and c-Src, and AnxA2 forms a functional heterotetramer with S100A10 to promote tumor motility. However, the combined role of AnxA2, S100A10 and SOX2 in promoting the resistant phenotype of SP cells has not been investigated. In the current studies, we examined for the first time a possible role of AnxA2 in regulating SA100A10 and SOX2 in promoting a resistant phenotype of lung tumors derived from H1650 SP cells. The resistance of H1650 SP cells to chemotherapy compared to H1650 MP cells was investigated by cell viability studies. A short hairpin RNA targeting AnxA2 (shAnxA2) was formulated in a liposomal (cationic ligand-guided, CLG) carrier and characterized for size, charge and entrapment and loading efficiencies; CLG carrier uptake by H1650 SP cells was demonstrated by fluorescence microscopy, and knockdown of AnxA2 confirmed by qRT-PCR and Western blot. Targeting of xenograft and orthotopic lung tumors was demonstrated with fluorescent (DiR) CLG carriers in mice. The therapeutic efficacy of CLG-AnxA2, compared to that of placebo, was investigated after 2 weeks of treatment in terms of tumor weights and tumor burden in vivo. Compared to mixed population cells, H1650 SP cells showed exponential resistance to docetaxel (15-fold), cisplatin (13-fold), 5-fluorouracil (31-fold), camptothecin (7-fold), and gemcitabine (16-fold). CLG carriers were nanoparticulate (199nm) with a slight positive charge (21.82mV); CLG-shAnx2 was of similar size (217nm) with decreased charge (12.11mV), and entrapment and loading efficiencies of 97% and 6.13% respectively. Fluorescence microscopy showed high uptake of CLG-shAnxA2 in H1650 SP cells after 2h resulting in a 6-fold reduction in AnxA2 mRNA expression and 92% decreased protein expression. Fluorescence imaging confirmed targeting of tumors and lungs by DiR-CLG carriers with sustained localization up to 4h in mice. CLG-shAnxA2 treatment of mice significantly reduced the weights of lung tumors derived from H1650 SP cells and tumor burden was reduced to only 19% of controls. The loss in tumor weights in response to CLG-shAnxA2 was associated with a significant loss in the relative levels of AnxA2, SOX2, total β-catenin and S100A10, both at the RNA and protein levels. These results suggest the intriguing possibility that AnxA2 may directly or indirectly regulate relative levels of β-catenin, S100A10 and SOX2, and that the combination of these factors may contribute to the resistant phenotype of H1650 SP cells. Thus down-regulating AnxA2 using RNAi methods may provide a useful method for targeting cancer stem cells and help advance therapeutic efficacy against lung cancers.


Molecular Pharmaceutics | 2015

Lipid Nanocarriers of a Lipid-Conjugated Estrogenic Derivative Inhibit Tumor Growth and Enhance Cisplatin Activity against Triple-Negative Breast Cancer: Pharmacokinetic and Efficacy Evaluation

Terrick Andey; Godeshala Sudhakar; Srujan Marepally; Apurva R. Patel; Rajkumar Banerjee; Mandip Singh

Breast cancer is the leading cause of malignancies among women globally. The triple negative breast cancer (TNBC) subtype is the most difficult to treat and accounts for 15% of all cases. Targeted therapies have been developed for TNBC but come short of clinical translation due to acquired tumor resistance. An effective therapy against TNBC must combine properties of target specificity, efficient tumor killing, and translational relevance. The objective of this study was to formulate a nontoxic, cationic, lipid-conjugated estrogenic derivative (ESC8), with demonstrated anticancer activity, for oral delivery in mice bearing triple negative breast cancer (TNBC) as xenograft tumors. The in vitro cell viability, Caco-2 permeability, and cell cycle dynamics of ESC8-treated TNBC cells were investigated. ESC8 was formulated as liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs) and characterized for size, zeta potential, entrapment efficiency, size stability, and tumor biodistribution. Pharmacokinetic modeling of plasma concentration-time course data was carried out following intravenous and oral administration in Sprague-Dawley rats. In vivo efficacy investigation of ESC8-SLNC was carried out in Nu/Nu mice bearing MDA-MB-231 TNBC as xenograft tumors, and the molecular dynamics modulating tumor growth inhibition was analyzed by Western blot. In vitro ESC8 inhibited TNBC and non-TNBC cell viability with IC50 ranging from 1.81 to 3.33 μM. ESC8 was superior to tamoxifen and Cisplatin in inhibiting MDA-MB-231 cell viability; and at 2.0 μM ESC8 enhanced Cisplatin cytotoxicity 16-fold. Intravenous ESC8 (2.0 mg/kg) was eliminated at a rate of 0.048 ± 0.01 h(-1) with a half-life of 14.63 ± 2.95 h in rats. ESC8 was orally bioavailable (47.03%) as solid lipid nanoparticles (ESC8-SLN). ESC8-SLN (10 mg/kg/day, ×14 days, p.o.) inhibited breast tumor growth by 74% (P < 0.0001 vs control) in mice bearing MDA-MB-231 cells as xenografts; and when given in combination with Cisplatin (2.0 mg/kg/biweekly, ×2 weeks, IV), tumor growth was inhibited by 87% (P = 0.0002, vs ESC8-SLN; 10 mg/kg/day, ×14 days, p.o). ESC8-SLN tumor growth inhibition was associated with increased expression of p21 and Caspase-9; as well as by inhibition of EGFR, Slug, p-Akt1, Vimentin, NFkβ, and IKKγ. These results show the promise of ESC8 as an oral adjuvant or neoadjuvant against triple negative breast cancer.


PLOS ONE | 2013

Design, Synthesis of Novel Lipids as Chemical Permeation Enhancers and Development of Nanoparticle System for Transdermal Drug Delivery

Srujan Marepally; Cedar H. A. Boakye; Punit P. Shah; Jagan R. Etukala; Adithi Vemuri; Mandip Singh

In the present study, we designed and developed novel lipids that include (Z)-1-(Octadec-9-en-1-yl)-pyrrolidine (Cy5T), 1, 1-Di-((Z)-octadec-9-en-1-yl)pyrrolidin-1-ium iodide (Cy5), (Z)-1-(Octadec-9-en-1-yl)-piperidine (Cy6T), and 1, 1-Di-((Z)-octadec-9-en-1-yl) piperidin-1-ium iodide (Cy6) to enhance the transdermal permeation of some selected drugs. Firstly, we evaluated the transdermal permeation efficacies of these lipids as chemical permeation enhancers in vehicle formulations for melatonin, ß-estradiol, caffeine, α-MSH, and spantide using franz diffusion cells. Among them Cy5 lipid was determined to be the most efficient by increasing the transdermal permeation of melatonin, ß-estradiol, caffeine, α-MSH, and spantide by 1.5 to 3.26-fold more at the epidermal layer and 1.3 to 2.5-fold more at the dermal layer, in comparison to either NMP or OA. Hence we developed a nanoparticle system (cy5 lipid ethanol drug nanoparticles) to evaluate any further improvement in the drug penetration. Cy5 lipid formed uniformly sized nanoparticles ranging from 150–200 nm depending on the type of drug. Further, Cy5 based nanoparticle system significantly (p<0.05) increased the permeation of all the drugs in comparison to the lipid solution and standard permeation enhancers. There were about 1.54 to 22-fold more of drug retained in the dermis for the Cy5 based nanoparticles compared to OA/NMP standard enhancers and 3.87 to 66.67-fold more than lipid solution. In addition, epifluorescent microscopic analysis in rhodamine-PE permeation studies confirmed the superior permeation enhancement of LEDs (detection of fluorescence up to skin depth of 340 μm) more than lipid solution, which revealed fluorescence up to skin depth of only 260 μm. In summary the present findings demonstrate that i) cationic lipid with 5 membered amine heterocyclic ring has higher permeating efficacy than the 6 membered amine hertocyclic ring. ii) The nanoparticle system prepared with Cy5 showed significant (p<0.05) increase in the permeation of the drugs than the control penetration enhancers, oleic acid and NMP.


Journal of Controlled Release | 2017

Novel amphiphilic lipid augments the co-delivery of erlotinib and IL36 siRNA into the skin for psoriasis treatment.

Cedar H. A. Boakye; Ketan Patel; Ravi Doddapaneni; Arvind Bagde; Srujan Marepally; Mandip Singh

Abstract In this study, we demonstrate for the first time the concurrent transdermal delivery of erlotinib and IL36&agr; siRNA as a potential dual therapy for psoriasis. The objectives were to develop and evaluate lipid nanocarriers (CYnLIP) using a novel pyrrolidinium lipid to disrupt the skin barrier for enhanced transdermal delivery. CYnLIP (132.00 ± 6.23 nm) had encapsulation efficiency of 49.04 ± 2.54% for erlotinib. DSC confirmed encapsulation of erlotinib within CYnLIP. Atomic Force Microscopy demonstrated notable topographical changes in the stratum corneum of skin permeated with CYnLIP that were absent in skin hydrated with water. Peak force distance curves also exhibited a more permeable membrane for CYnLIP‐incubated skin than hydrated skin. Permeation studies showed enhanced (p < 0.01) skin retention of erlotinib by CYnLIP (40.76‐fold) than solution and more pronounced fluorescence at deeper layers of the skin for fluorescein‐labeled siRNA‐CYnLIP than solution. The enhanced co‐transdermal delivery of erlotinib and IL36&agr; siRNA by CYnLIP efficaciously treated psoriatic‐like plaques in C57BL/6 mice (PASI score of 1) compared to imiquimod‐only treatment (PASI score of 4). IHC and western blotting revealed reduction in epidermal hyperplasia (Ki67) and in the dermal infiltration of inflammatory cytokines (IL36&agr;, pSTAT3, TNF&agr;, NF&kgr;B, IL23 and IL17) for erlotinib/IL36&agr; siRNA‐CYnLIP (p < 0.05) comparable to Tacrolimus but markedly less than imiquimod‐only treatment. Graphical abstract Figure. No Caption available.


Development | 2017

The miR-124 family of microRNAs is crucial for regeneration of the brain and visual system in the planarian Schmidtea mediterranea

Vidyanand Sasidharan; Srujan Marepally; Sarah A. Elliott; Srishti Baid; Vairavan Lakshmanan; Nishtha Nayyar; Dhiru Bansal; Alejandro Sánchez Alvarado; Praveen Kumar Vemula; Dasaradhi Palakodeti

Brain regeneration in planarians is mediated by precise spatiotemporal control of gene expression and is crucial for multiple aspects of neurogenesis. However, the mechanisms underpinning the gene regulation essential for brain regeneration are largely unknown. Here, we investigated the role of the miR-124 family of microRNAs in planarian brain regeneration. The miR-124 family (miR-124) is highly conserved in animals and regulates neurogenesis by facilitating neural differentiation, yet its role in neural wiring and brain organization is not known. We developed a novel method for delivering anti-miRs using liposomes for the functional knockdown of microRNAs. Smed-miR-124 knockdown revealed a key role for these microRNAs in neuronal organization during planarian brain regeneration. Our results also demonstrated an essential role for miR-124 in the generation of eye progenitors. Additionally, miR-124 regulates Smed-slit-1, which encodes an axon guidance protein, either by targeting slit-1 mRNA or, potentially, by modulating the canonical Notch pathway. Together, our results reveal a role for miR-124 in regulating the regeneration of a functional brain and visual system. Summary: miR-124 is required during de novo regeneration of the cephalic ganglion and visual system in planarians, as well as in slit-1 expression in the midline of anterior regenerating tissue via canonical Notch signaling.


Colloids and Surfaces B: Biointerfaces | 2017

An anti-oxidant, α-lipoic acid conjugated oleoyl-sn-phosphatidylcholineas a helper lipid in cationic liposomal formulations

Priya Dharmalingam; Balakrishna Marrapu; Chandrashekhar Voshavar; Rasagna Nadella; Vignesh Kumar Rangasami; R.V. Shaji; Salar Abbas; R.B.N. Prasad; Shiva Shanker Kaki; Srujan Marepally

Development of safe non-viral carrier systems for efficient intra-cellular delivery of drugs and genes hold promise in the area of translational research. Liposome based delivery systems have emerged as one of the attractive strategies for efficient delivery of drugs and nucleic acids. To this end, number of investigations was carried on liposomal formulations using lipids for achieving higher efficiency in transfection with lower cytotoxicities. In our efforts to develop safer and efficient liposomal delivery systems, we synthesized a novel anti-oxidant lipid, α-lipoyl, oleyl-sn-phosphatidylcholine (LOPC) and used as a helper lipid in combination with a cationic amphiphile, Di-Stearyl Dihydroxy Ethyl Ammonium Chloride (DSDEAC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) at varying concentrations of LOPC. DNA binding properties of the liposomal formulations (DS, DS LA1, DS LA2 and DS LA3) revealed that increasing the percentage of single aliphatic chain lipid LOPC, did not affect the DNA binding properties. But, transfection profiles of these liposomal formulations in 3 different cell lines (HeLa, HEK 293 and MCF7) showed difference in their efficacies. Results showed that optimal percentage of LOPC i.e. 25% in DSDEAC and DOPC at 1:1 molar ratio (DS LA1) enhanced transfection as compared to DSDEAC:DOPC alone. The endosomal escape studies with NBD labelled lysotracker and Rhodamine labelled liposomal formulations revealed that DS LA1 and DS LA2 facilitated the release of genetic cargo with a better efficiency than their counter parts. Reactive Oxygen Species (ROS), a key modulator of necroptosis were lowered with the treatment of DS LA1 than other liposomal formulations. Here in, we present a novel liposomal formulation using DSDEAC and DOPC at 1:1 molar ratio doped with 25-50% (mole ratio) LOPC as an efficient delivery system for enhanced transfection with quenching of ROS levels compared to formulations without LOPC.


RSC Advances | 2017

Scaling the effect of hydrophobic chain length on gene transfer properties of di-alkyl, di-hydroxy ethylammonium chloride based cationic amphiphiles

Ankita A. Hiwale; Chandrashekhar Voshavar; Priya Dharmalingam; Ashish Dhayani; Rajesh Mukthavaram; Rasajna Nadella; Omprakash Sunnapu; Sivaraman Gandhi; V.G.M. Naidu; Arabinda Chaudhuri; Srujan Marepally; Praveen Kumar Vemula

The success of gene therapy critically depends on the availability of efficient transfection vectors. Cationic lipids are the most widely studied non-viral vectors. The molecular architecture of the cationic lipid determines its transfection efficiency. Variations in alkyl chain lengths of lipids influence self-assembly and liposomal fusion with the cell membrane. These factors determine the transfection ability of the lipid. Thus, to probe the effect of asymmetry in hydrophobic chains on transfection efficiency, we designed and synthesized a series of cationic lipids by systematically varying one of the two alkyl chains linked to the quaternary nitrogen centre from C18 to C10 and keeping the other alkyl C18 chain constant (Lip1818-Lip1810). Transfection studies in multiple cultured mammalian cells (CHO, B16F10 and HeLa) revealed that the lipids with C18:C14 and C18:C12 alkyl chains (Lip1814 & Lip1812) showed 20–30% higher transfection efficacies than their counterparts at 2 : 1 and 4 : 1 lipid to pDNA charge ratios. Cryo-transmission electron images showed unilamellar vesicle structures for the liposomes of lipids. Mechanistic studies involving Small Angle X-ray Scattering (SAXS) revealed that asymmetry in the hydrophobic region has a significant impact on liposomal fusion with the plasma membrane model. Collectively, these findings demonstrate that chain length asymmetry in the hydrophobic region of cationic lipids has an important role in their liposome–DNA interactions at optimal 2 : 1 and 4 : 1 lipid to pDNA charge ratios, which in turn modulates their gene transfer properties.

Collaboration


Dive into the Srujan Marepally's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arabinda Chaudhuri

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Rajkumar Banerjee

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Praveen Kumar Vemula

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge