St. Raetz
European Space Agency
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by St. Raetz.
Monthly Notices of the Royal Astronomical Society | 2010
G. Maciejewski; D. Dimitrov; R. Neuhäuser; A. Niedzielski; St. Raetz; Ch. Ginski; Ch. Adam; C. Marka; M. Moualla; M. Mugrauer
Photometric follow-ups of transiting exoplanets may lead to discoveries of additional, less massive bodies in extrasolar systems. This is possible by detecting and then analysing variations in transit timing of transiting exoplanets. We present photometric observations gathered in 2009 and 2010 for exoplanet WASP-3b during the dedicated transit-timing-variation campaign. The observed transit timing cannot be explained by a constant period but by a periodic variation in the observations minus calculations diagram. Simplified models assuming the existence of a perturbing planet in the system and reproducing the observed variations of timing residuals were identified by three-body simulations. We found that the configuration with the hypothetical second planet of the mass of ∼15 M⊕, located close to the outer 2:1 mean motion resonance is the most likely scenario reproducing observed transit timing. We emphasize, however, that more observations are required to constrain better the parameters of the hypothetical second planet in WASP-3 system. For final interpretation not only transit timing but also photometric observations of the transit of the predicted second planet and the high precision radial-velocity data are needed.
Monthly Notices of the Royal Astronomical Society | 2011
G. Maciejewski; D. Dimitrov; R. Neuhäuser; N. Tetzlaff; A. Niedzielski; St. Raetz; W. P. Chen; Frederick M. Walter; C. Marka; S. Baar; T.Krejčová; Jan Budaj; V. Krushevska; Kengo Tachihara; H. Takahashi; M. Mugrauer
Transit timing analysis may be an effective method of discovering additional bodies in extrasolar systems which harbour transiting exoplanets. The deviations from the Keplerian motion, caused by mutual gravitational interactions between planets, are expected to generate transit timing variations of transiting exoplanets. In 2009 we collected 9 light curves of 8 transits of the exoplanet WASP-10b. Combining these data with published ones, we found that transit timing cannot be explained by a constant period but by a periodic variation. Simplified three-body models which reproduce the observed variations of timing residuals were identified by numerical simulations. We found that the configuration with an additional planet of mass of ∼0.1 MJ and orbital period of ∼5.23 d, located close to the outer 5:3 mean motion resonance, is the most likely scenario. If the second planet is a transiter, the estimated flux drop will be ∼0.3 per cent and can be observable with a ground-based telescope. Moreover, we present evidence that the spots on the stellar surface and rotation of the star affect the radial velocity curve giving rise to spurious eccentricity of the orbit of the first planet. We argue that the orbit of WASP-10b is essentially circular. Using the gyrochronology method, the host star was found to be 270± 80 Myr old. This young age can explain the large radius reported for WASP-10b.
Astronomy and Astrophysics | 2011
G. Maciejewski; R. Errmann; St. Raetz; M. Seeliger; Izabela Spaleniak; R. Neuhäuser
Aims. The transiting extrasolar planet WASP-12 b was found to be on e of the most intensely irradiated exoplanets. It is unexpec tedly bloated and is losing mass that may accrete into the host star . Our aim was to refine the parameters of this intriguing syste m and search for signs of transit timing variations. Methods. We gathered high-precision light curves for two transits of WASP-12 b. Assuming various limb-darkening laws, we generated best-fitting models and redetermined parameters of t he system. Error estimates were derived by the prayer bead me thod and Monte Carlo simulations. Results. System parameters obtained by us are found to agree with prev ious studies within one sigma. Use of the non-linear limb-darkening laws results in the best-fitting models. Wit h two new mid-transit times, the ephemeris was refined to BJD TDB = (2454508.97682± 0.00020)+ (1.09142245± 0.00000033) E. Interestingly, indications of transit timing variation a re detected at the level of 3.4 sigma. This signal can be induced by an additiona l planet in the system. Simplified numerical simulations sho ws that a perturber could be a terrestrial-type planet if both planet s are in a low-order orbital resonance. However, we emphasis e that further observations are needed to confirm variation and to constrai properties of the perturber.Aims. The transiting extrasolar planet WASP-12 b was found to be one of the most intensely irradiated exoplanets. It is unexpectedly bloated and is losing mass that may accrete into the host star. Our aim was to refine the parameters of this intriguing system and search for signs of transit timing variations. Methods. We gathered high-precision light curves for two transits of WASP-12 b. Assuming various limb-darkening laws, we generated best-fitting models and redetermined the parameters of the system. Error estimates were derived by the prayer-bead method and Monte Carlo simulations. Results. System parameters obtained by us are found to agree with previous studies within one sigma. Use of the non-linear limb-darkening laws results in the best-fitting models. With two new mid-transit times, the ephemeris was refined to BJDTDB = (2 454 508.97682 ± 0.00020) + (1.09142245 ± 0.00000033)E. Interestingly, indications of transit timing variation are detected at the level of 3.4 sigma. This signal can be induced by an additional planet in the system. Simplified numerical simulations show that a perturber could be a terrestrial-type planet if both planets are in a low-order orbital resonance. However, we emphasise that further observations are needed to confirm variation and to constrain properties of the perturber.
Astronomische Nachrichten | 2012
Theodor Pribulla; M. Vaňko; M. Ammler-von Eiff; M. Andreev; A. Aslantürk; N. Awadalla; D. Baluďansky; Alfio Bonanno; H. Božić; G. Catanzaro; L. Çelik; P.E. Christopoulou; E. Covino; F. Cusano; D. Dimitrov; P. Dubovský; P. Eigmueller; E.M. Esmer; A. Frasca; Ľ. Hambálek; M. Hanna; A. Hanslmeier; B. Kalomeni; Diana P. Kjurkchieva; V. Krushevska; I. Kudzej; E. Kundra; Yu. Kuznyetsova; J.W. Lee; M. Leitzinger
We present a new observational campaign, Dwarf, aimed at detection of circumbinary extrasolar planets using the timing of the minima of low-mass eclipsing binaries. The observations will be performed within an extensive network of relatively small to medium-size telescopes with apertures of similar to 20-200 cm. The starting sample of the objects to be monitored contains (i) low-mass eclipsing binaries with M and K components, (ii) short-period binaries with a sdB or sdO component, and (iii) post-common-envelope systems containing a WD, which enable to determine minima with high precision. Since the amplitude of the timing signal increases with the orbital period of an invisible third component, the timescale of the project is long, at least 5-10 years. The paper gives simple formulas to estimate the suitability of individual eclipsing binaries for the circumbinary planet detection. Intrinsic variability of the binaries (photospheric spots, flares, pulsation etc.) limiting the accuracy of the minima timing is also discussed. The manuscript also describes the best observing strategy and methods to detect cyclic timing variability in the minima times indicating the presence of circumbinary planets. First test observations of the selected targets are presented ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Astronomy and Astrophysics | 2013
G. Maciejewski; D. Dimitrov; M. Seeliger; St. Raetz; Ł. Bukowiecki; M. Kitze; R. Errmann; G. Nowak; A. Niedzielski; V. Popov; C. Marka; K. Goździewski; R. Neuhäuser; J. Ohlert; T. C. Hinse; Jae Woo Lee; C.-U. Lee; J.-N. Yoon; A. Berndt; H. Gilbert; Ch. Ginski; M. M. Hohle; M. Mugrauer; T. Röll; T. O. B. Schmidt; N. Tetzlaff; L. Mancini; J. Southworth; M. Dall’Ora; S. Ciceri
Aims. The transiting planet WASP-12 b was identified as a potential target for transit-timing studies because a departure from a linear ephemeris has been reported in the literature. Such deviations could be caused by an additional planet in the system. We attempt to confirm the claimed variations in transit timing and interpret their origin. Methods. We organised a multi-site campaign to observe transits by WASP-12 b in three observing seasons, using 0.5–2.6-metre telescopes. Results. We obtained 61 transit light curves, many of them with sub-millimagnitude precision. The simultaneous analysis of the best-quality datasets allowed us to obtain refined system parameters, which agree with values reported in previous studies. The residuals versus a linear ephemeris reveal a possible periodic signal that may be approximated by a sinusoid with an amplitude of 0.00068 ± 0.00013 d and period of 500 ± 20 orbital periods of WASP-12 b. The joint analysis of timing data and published radial velocity measurements results in a two-planet model that explains observations better than do single-planet scenarios. We hypothesise that WASP-12 b might not be the only planet in the system, and there might be the additional 0.1 MJup body on a 3.6-d eccentric orbit. A dynamical analysis indicates that the proposed two-planet system is stable on long timescales.
The Astronomical Journal | 2013
G. Maciejewski; A. Niedzielski; Alex Wolszczan; G. Nowak; R. Neuhäuser; Joshua N. Winn; B. Deka; M. Adamów; M. Górecka; Matilde Fernández; F. J. Aceituno; J. Ohlert; R. Errmann; M. Seeliger; D. Dimitrov; D. W. Latham; Gilbert A. Esquerdo; L. McKnight; M. Holman; Eric L. N. Jensen; U. Kramm; Theodor Pribulla; St. Raetz; T. O. B. Schmidt; C. Ginski; S. Mottola; S. Hellmich; Ch. Adam; H. Gilbert; M. Mugrauer
There have been previous hints that the transiting planet WASP-3b is accompanied by a second planet in a nearby orbit, based on small deviations from strict periodicity of the observed transits. Here we present 17 precise radial velocity (RV) measurements and 32 transit light curves that were acquired between 2009 and 2011. These data were used to refine the parameters of the host star and transiting planet. This has resulted in reduced uncertainties for the radii and masses of the star and planet. The RV data and the transit times show no evidence for an additional planet in the system. Therefore, we have determined the upper limit on the mass of any hypothetical second planet, as a function of its orbital period.
Astronomy and Astrophysics | 2011
G. Maciejewski; St. Raetz; N. Nettelmann; M. Seeliger; Ch. Adam; G. Nowak; R. Neuhäuser
Context. The WASP-10 planetary system is intriguing because different values of radius have been reported for its transiting exoplanet. The host star exhibits activity in terms of photometric variability, which is caused by the rotational modulation of the spots. Moreover, a periodic modulation has been discovered in transit timing of WASP-10 b, which could be a sign of an additional body perturbing the orbital motion of the transiting planet. Aims. We attempt to refine the physical parameters of the system, in particular the planetary radius, which is crucial for studying the internal structure of the transiting planet. We also determine new mid-transit times to confirm or refute observed anomalies in transit timing. Methods. We acquired high-precision light curves for four transits of WASP-10 b in 2010. Assuming various limb-darkening laws, we generated best-fit models and redetermined parameters of the system. The prayer-bead method and Monte Carlo simulations were used to derive error estimates. Results. Three transit light curves exhibit signatures of the occultations of dark spots by the planet during its passage across the stellar disk. The influence of stellar activity on transit depth is taken into account while determining system parameters. The radius of WASP-10 b is found to be no greater than 1.03 +0.07 −0.03 Jupiter radii, a value significantly smaller than most previous studies indicate. We calculate interior structure models of the planet, assuming a two-layer structure with one homogeneous envelope atop a rock core. The high value of the WASP-10 b’s mean density allows one to consider the planet’s internal structure including 270 to 450 Earth masses of heavy elements. Our new mid-transit times confirm that transit timing cannot be explained by a constant period if all literature data points are considered. They are consistent with the ephemeris assuming a periodic variation of transit timing. We show that possible starspot features affecting the transit’s ingress or egress cannot reproduce variations in transit timing at the observed amplitude.
Monthly Notices of the Royal Astronomical Society | 2014
St. Raetz; G. Maciejewski; Ch. Ginski; M. Mugrauer; A. Berndt; T. Eisenbeiss; Ch. Adam; M. Raetz; T. Roell; M. Seeliger; C. Marka; M. Vaňko; Ł. Bukowiecki; R. Errmann; M. Kitze; J. Ohlert; Theodor Pribulla; J. G. Schmidt; D. Sebastian; D. Puchalski; N. Tetzlaff; M. M. Hohle; T. O. B. Schmidt; R. Neuhäuser
Homogeneous observations and careful analysis of transit light curves can lead to the identification of transit timing variations (TTVs). TrES-2 is one of few exoplanets, which offer the matchless possibility to combine long-term ground-based observations with continuous satellite data. Our research aimed at the search for TTVs that would be indicative of perturbations from additional bodies in the system. We also wanted to refine the system parameters and the orbital elements. We obtained 44 ground-based light curves of 31 individual transit events of TrES-2. Eight 0.2 - 2.2-m telescopes located at six observatories in Germany, Poland and Spain were used. In addition, we analysed 18 quarters (Q0-Q17) of observational data from NASAs space telescope Kepler including 435 individual transit events and 11 publicly available ground-based light curves. Assuming different limb darkening (LD) laws we performed an analysis for all light curves and redetermined the parameters of the system. We also carried out a joint analysis of the ground- and space-based data. The long observation period of seven years (2007-2013) allowed a very precise redetermination of the transit ephemeris. For a total of 490 transit light curves of TrES-2, the time of transit mid-point was determined. The transit times support neither variations on long time-scale nor on short time-scales. The nearly continuous observations of Kepler show no statistically significant increase or decrease in the orbital inclination i and the transit duration D. Only the transit depth shows a slight increase which could be an indication of an increasing stellar activity. In general, system parameters obtained by us were found to be in agreement with previous studies but are the most precise values to date.
The Astrophysical Journal | 2012
W. P. Chen; S.C.-L. Hu; R. Errmann; Ch. Adam; S. Baar; A. Berndt; L. Bukowiecki; D. Dimitrov; T. Eisenbeiß; S. Fiedler; Ch. Ginski; C. Gräfe; Jhen-Kuei Guo; M. M. Hohle; H. Y. Hsiao; R. Janulis; M. Kitze; H. C. Lin; Chien-Cheng Lin; G. Maciejewski; C. Marka; Laurence A. Marschall; M. Moualla; M. Mugrauer; R. Neuhäuser; T. Pribulla; St. Raetz; T. Röll; E. Schmidt; J. G. Schmidt
GM Cephei (GM Cep), in the young ({approx}4 Myr) open cluster Trumpler 37, has been known to be an abrupt variable and to have a circumstellar disk with a very active accretion. Our monitoring observations in 2009-2011 revealed that the star showed sporadic flare events, each with a brightening of {approx}< 0.5 mag lasting for days. These brightening events, associated with a color change toward blue, should originate from increased accretion activity. Moreover, the star also underwent a brightness drop of {approx}1 mag lasting for about a month, during which time the star became bluer when fainter. Such brightness drops seem to have a recurrence timescale of a year, as evidenced in our data and the photometric behavior of GM Cep over a century. Between consecutive drops, the star brightened gradually by about 1 mag and became blue at peak luminosity. We propose that the drop is caused by the obscuration of the central star by an orbiting dust concentration. The UX Orionis type of activity in GM Cep therefore exemplifies the disk inhomogeneity process in transition between the grain coagulation and the planetesimal formation in a young circumstellar disk.
Monthly Notices of the Royal Astronomical Society | 2015
St. Raetz; G. Maciejewski; M. Seeliger; C. Marka; Matilde Fernández; Tolga Guver; Ersin Gogus; G. Nowak; M. Vaňko; A. Berndt; T. Eisenbeiss; M. Mugrauer; L. Trepl; J. Gelszinnis
Although WASP-14 b is one of the most massive and densest exoplanets on a tight and eccentric orbit, it has never been a target of photometric follow-up monitoring or dedicated observing campaigns. We report on new photometric transit observations of WASP-14 b obtained within the framework of Transit Timing Variations @ Young Exoplanet Transit Initiative (TTV@YETI). We collected 19 light curves of 13 individual transit events using six telescopes located in five observatories distributed in Europe and Asia. From light-curve modelling, we determined the planetary, stellar, and geometrical properties of the system and found them in agreement with the values from the discovery paper. A test of the robustness of the transit times revealed that in case of a non-reproducible transit shape the uncertainties may be underestimated even with a wavelet-based error estimation methods. For the timing analysis, we included two publicly available transit times from 2007 and 2009. The long observation period of seven years (2007-2013) allowed us to refine the transit ephemeris. We derived an orbital period 1.2 s longer and 10 times more precise than the one given in the discovery paper. We found no significant periodic signal in the timing-residuals and, hence, no evidence for TTV in the system.