Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stacey McGee is active.

Publication


Featured researches published by Stacey McGee.


Endocrinology | 2013

Precocious Puberty and Leydig Cell Hyperplasia in Male Mice With a Gain of Function Mutation in the LH Receptor Gene

Stacey McGee; Prema Narayan

The LH receptor (LHR) is critical for steroidogenesis and gametogenesis. Its essential role is underscored by the developmental and reproductive abnormalities that occur due to genetic mutations identified in the human LHR. In males, activating mutations are associated with precocious puberty and Leydig cell hyperplasia. To generate a mouse model for the human disease, we have introduced an aspartic acid to glycine mutation in amino acid residue 582 (D582G) of the mouse LHR gene corresponding to the most common D578G mutation found in boys with familial male-limited precocious puberty (FMPP). In transfected cells, mouse D582G mLHR exhibited constitutive activity with a 23-fold increase in basal cAMP levels compared with the wild-type receptor. A temporal study of male mice from 7 days to 24 weeks indicated that the knock-in mice with the mutated receptor (KiLHR(D582G)) exhibited precocious puberty with elevated testosterone levels as early as 7 days of age and through adulthood. Leydig cell-specific genes encoding LHR and several steroidogenic enzymes were up-regulated in KiLHR(D582G) testis. Leydig cell hyperplasia was detected at all ages, whereas Sertoli and germ cell development appeared normal. A novel finding from our studies, not previously reported in the FMPP cases, is that extensive hyperplasia is commonly found around the periphery of the testis. We further demonstrate that the hyperplasia is due to premature proliferation and precocious differentiation of adult Leydig cells in the KiLHR(D582G) testis. The KiLHR(D582G) mice provide a mouse model for FMPP, and we suggest that it is a useful model for studying pathologies associated with altered LHR signaling.


Molecular and Cellular Endocrinology | 2009

Impact of a Constitutively Active Luteinizing Hormone Receptor on Testicular Gene Expression and Postnatal Leydig Cell Development

Mary Coonce; Amanda C. Rabideau; Stacey McGee; Keriayn N. Smith; Prema Narayan

The actions of luteinizing hormone (LH) mediated through its receptor (LHR) are critical for testicular steroidogenesis and Leydig cell differentiation. We have previously characterized transgenic mice expressing a genetically engineered, constitutively active yoked hormone-receptor complex (YHR), in which a fusion protein of human chorionic gonadotropin (hCG) was covalently linked to LHR. Elevated testosterone levels were detected in male mice expressing YHR (YHR(+)) at 3 and 5 weeks of age, accompanied by decreases in testicular weight and serum levels of LH and follicle stimulating hormone (FSH). Here we report a temporal study to identify testicular genes whose expression is altered in YHR(+) mice during postnatal development. The mRNA expression levels for the steroidogenic enzymes, P450 17alpha-hydroxylase, 17beta-hydroxysteroid dehydrogenase3 and 5alpha-reductase1 were down-regulated in 3- and 5-week-old YHR(+) testis. This result coupled with an immunohistochemical analysis of Leydig cell specific proteins and quantification of Leydig cell numbers identified a decrease in adult Leydig cells in YHR(+) mice. Surprisingly, no change was detected for cytochrome P450 side-chain cleavage or steroidogenic acute regulatory protein RNA levels between WT and YHR(+) mice. In contrast, mRNA levels for insulin-like growth factor binding protein 3 were up-regulated in 3- and 5-week-old YHR(+) mice. The mRNA levels for several germ cell-specific proteins were up-regulated at 5 weeks of age in both WT and YHR(+) mice. We conclude that premature high levels of testosterone alter the expression of a select number of testicular genes and impair the differentiation of adult Leydig cells in mice.


British Journal of Nutrition | 2015

Flaxseed reduces the pro-carcinogenic micro-environment in the ovaries of normal hens by altering the PG and oestrogen pathways in a dose-dependent manner.

Anushka Dikshit; Manoel Adrião Gomes Filho; Erfan Eilati; Stacey McGee; Carrie Small; Chun-qi Gao; Thomas Klug; Dale B. Hales

The objective of the present study was to find the optimum dose of flaxseed that would decrease PG and alter oestrogen pathway endpoints implicated in ovarian cancer. In the study, four groups of fifty 1.5-year-old chickens were fed different amounts of flaxseed (0, 5, 10 or 15% of their total diet) for 4 months and were then killed to collect blood and tissues. Levels of flaxseed lignan metabolites, Enterolactone (EL) and Enterodiol (ED) were measured in the serum, liver and ovaries by liquid chromatography-MS/MS, and n-3 and n-6 fatty acid (FA) levels were measured by GC. The effects of the varied flaxseed doses were assessed by measuring levels of PGE2 and oestrogen metabolites (16-hydroxyestrone (16-OHE1) and 2-hydroxyestrone (2-OHE1)) as well as by analysing the expression of the oestradiol metabolising enzymes CYP3A4 (cytochrome p450, family 3, subfamily A, polypeptide 4), CYP1B1 (cytochrome p450, family 1, subfamily B, polypeptide 1) and CYP1A1 (cytochrome p450, family 1, subfamily A, polypeptide 1) and that of oestrogen receptor α (ERα) in the ovaries. The ratio of n-3:n-FA increased with an increase in flaxseed supplementation and corresponded to a dose-dependent decrease in cyclo-oxygenase-2 protein and PGE2 levels. EL and ED increased in the serum, liver and ovaries with increased concentrations of flaxseed. Flaxseed decreased the expression of ERα in the ovaries. The ratio of 2-OHE1:16-OHE1 in the serum increased significantly in the 15% flaxseed diet, and there was a corresponding increase in CYP1A1 in the liver and decrease in CYP3A4 in the ovaries. CYP1B1 mRNA also decreased with flaxseed diet in the ovaries. The 15% flaxseed-supplemented diet significantly decreased inflammatory PGE2, ERα, CYP3A4, CYP1B1 and 16-OHE1, but it increased CYP1A1 and 2-OHE1, which thus reduced the inflammatory and pro-carcinogenic micro-environment of the ovaries.


Biology of Reproduction | 2015

Infertility in Female Mice with a Gain-of-Function Mutation in the Luteinizing Hormone Receptor Is Due to Irregular Estrous Cyclicity, Anovulation, Hormonal Alterations, and Polycystic Ovaries

Lan Hai; Stacey McGee; Amanda C. Rabideau; Marilène Paquet; Prema Narayan

ABSTRACT The luteinizing hormone receptor, LHCGR, is essential for fertility in males and females, and genetic mutations in the receptor have been identified that result in developmental and reproductive defects. We have previously generated and characterized a mouse model (KiLHRD582G) for familial male-limited precocious puberty caused by an activating mutation in the receptor. We demonstrated that the phenotype of the KiLHRD582G male mice is an accurate phenocopy of male patients with activating LHCGR mutations. In this study, we observed that unlike women with activating LHCGR mutations who are normal, female KiLHRD582G mice are infertile. Mice exhibit irregular estrous cyclicity, anovulation, and precocious puberty. A temporal study from 2–24 wk of age indicated elevated levels of progesterone, androstenedione, testosterone, and estradiol and upregulation of several steroidogenic enzyme genes. Ovaries of KiLHRD582G mice exhibited significant pathology with the development of large hemorrhagic cysts as early as 3 wk of age, extensive stromal cell hyperplasia and hypertrophy with luteinization, numerous atretic follicles, and granulosa cell tumors. Ovulation could not be rescued by the addition of exogenous gonadotropins. The body weights of the KiLHRD582G mice were higher than wild-type counterparts, but there was no increase in the body fat composition or metabolic abnormalities such as impaired glucose tolerance and insulin resistance. These studies demonstrate that activating LHCGR mutations do not produce the same phenotype in female mice as in humans and clearly illustrate species differences in the expression and regulation of LHCGR in the ovary, but not in the testis.


Lipids in Health and Disease | 2013

Anti-inflammatory effects of fish oil in ovaries of laying hens target prostaglandin pathways

Erfan Eilati; Carolynn C Small; Stacey McGee; Nawneet K Kurrey; Dale B. Hales

BackgroundAn effective way to control cancer is by prevention. Ovarian cancer is the most lethal gynecological malignancy. Progress in the treatment and prevention of ovarian cancer has been hampered due to the lack of an appropriate animal model and absence of effective chemo-prevention strategies. The domestic hens spontaneously develop ovarian adenocarcinomas that share similar histological appearance and symptoms such as ascites and metastasis with humans. There is a link between chronic inflammation and cancer. Prostaglandin E2 (PGE2) is the most pro-inflammatory ecoisanoid and one of the downstream products of two isoforms of cyclooxygenase (COX) enzymes: COX-1 and COX-2. PGE2 exerts its effects on target cells by coupling to four subtypes of receptors which have been classified as EP1-4. Fish oil is a source of omega-3 fatty acids (OM-3FAs) which may be effective in prevention of ovarian cancer. Our objective was to assess the potential impact of fish oil on expression of COX enzymes, PGE2 concentration, apoptosis and proliferation in ovaries of laying hens.Methods48 white Leghorn hens were fed 50, 100, 175, 375 and 700 mg/kg fish oil for 21 days. The OM3-FAs and omega-6 fatty acids contents of egg yolks were determined by Gas Chromatography. Proliferation, apoptosis, COX-1, COX-2 and prostaglandin receptor subtype 4 (EP4) protein and mRNA expression and PGE2 concentration in ovaries were measured by PCNA, TUNEL, Western blot, quantitative real-time qPCR and ELISA, respectively.ResultsConsumption of fish oil increased the incorporation of OM-3FAs into yolks and decreased both COX-1 and COX-2 protein and mRNA expression. In correlation with COXs down-regulation, fish oil significantly reduced the concentrations of PGE2 in ovaries. EP4 protein and mRNA expression in ovaries of hens was not affected by fish oil treatment. A lower dose of fish oil increased the egg laying frequency. 175 and 700 mg/kg fish oil reduced proliferation and 700 mg/kg increased apoptosis in hen ovaries.ConclusionsOur findings suggest that the lower doses of fish oil reduce inflammatory PG and may be an effective approach in preventing ovarian carcinogenesis. These findings may provide the basis for clinical trials utilizing fish oil as a dietary intervention targeting prostaglandin biosynthesis for the prevention and treatment of ovarian cancer.


Biology of Reproduction | 2014

The Forkhead Transcription Factor, FOXP3: A Critical Role in Male Fertility in Mice

Jake S. Jasurda; Deborah O. Jung; Erin D. Froeter; David B. Schwartz; Torin D. Hopkins; Corrie L. Farris; Stacey McGee; Prema Narayan; Buffy S. Ellsworth

ABSTRACT Fertility is dependent on the hypothalamic-pituitary-gonadal axis. Each component of this axis is essential for normal reproductive function. Mice with a mutation in the forkhead transcription factor gene, Foxp3, exhibit autoimmunity and infertility. We have previously shown that Foxp3 mutant mice have significantly reduced expression of pituitary gonadotropins. To address the role of Foxp3 in gonadal function, we examined the gonadal phenotype of these mice. Foxp3 mutant mice have significantly reduced seminal vesicle and testis weights compared with Foxp3+/Y littermates. Spermatogenesis in Foxp3 mutant males is arrested prior to spermatid elongation. Activation of luteinizing hormone signaling in Foxp3 mutant mice by treatment with human chorionic gonadotropin significantly increases seminal vesicle and testis weights as well as testicular testosterone content and seminiferous tubule diameter. Interestingly, human chorionic gonadotropin treatments rescue spermatogenesis in Foxp3 mutant males, suggesting that their gonadal phenotype is due primarily to a loss of pituitary gonadotropin stimulation rather than an intrinsic gonadal defect.


Toxicology International | 2014

Time-Dependent Regulation of Apoptosis by Aen and Bax in Response to 2-Aminoanthracene Dietary Consumption

Worlanyo E. Gato; Stacey McGee; Dale B. Hales; Jay C. Means

Background/Objective: The modulation of the toxic effects of 2-aminoanthracene (2AA) on the liver by apoptosis was investigated. Fisher-344 (F344) rats were exposed to various concentrations of 2AA for 14 and 28 days. The arylamine 2AA is an aromatic hydrocarbon employed in manufacturing chemicals, dyes, inks, and it is also a curing agent in epoxy resins and polyurethanes. 2AA has been detected in tobacco smoke and cooked foods. Methods: Analysis of total messenger ribonucleic acid (mRNA) extracts from liver for apoptosis-related gene expression changes in apoptosis enhancing nuclease (AEN), Bcl2-associated X protein (BAX), CASP3, Jun proto-oncogene (JUN), murine double minute-2 p53 binding protein homolog (MDM2), tumor protein p53 (p53), and GAPDH genes by quantitative real-time polymerase chain reaction (qRT-PCR) was coupled with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and caspase-3 (Casp3) activity assays. Results: Specific apoptosis staining result does not seem to show significant difference between control and treated animals. This may be due to freeze-thaw artifacts observed in the liver samples. However, there appears to be a greater level of apoptosis in medium- and high-dose (MD and HD) 2AA treated animals. Analyses of apoptosis-related genes seem to show AEN and BAX as the main targets in the induction of apoptosis in response to 2AA exposure, though p53, MDM2, and JUN may play supporting roles. Conclusion: Dose-dependent increases in mRNA expression were observed in all genes except Casp3. BAX was very highly expressed in the HD rats belonging to the 2-week exposure group. This trend was not observed in the animals treated for 4 weeks. Instead, AEN was rather very highly expressed in the liver of the MD animals that were treated with 2AA for 28 days.


Endocrinology | 2018

Single-cell RNA sequencing reveals novel markers of male pituitary stem cells and hormone-producing cell-types

Leonard Y.M. Cheung; Akima S. George; Stacey McGee; Alexandre Z. Daly; Michelle L. Brinkmeier; Buffy S. Ellsworth; Sally A. Camper


Archive | 2014

Apoptosis Modulates Hepatotoxic Effects of 2-Aminoanthracene in Fisher 344 Rat

Worlanyo E. Gato; Dale B. Hales; Stacey McGee; Jay C. Means


Archive | 2013

The Role of Apoptosis in Modulating Effects of 2-Aminoanthracene in Fisher-344 Rat Liver

Worlanyo E. Gato; Stacey McGee; Dale B. Hales; Jay C. Means

Collaboration


Dive into the Stacey McGee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dale B. Hales

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Amanda C. Rabideau

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Buffy S. Ellsworth

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Jay C. Means

University of California

View shared research outputs
Top Co-Authors

Avatar

Worlanyo E. Gato

St. Cloud State University

View shared research outputs
Top Co-Authors

Avatar

David B. Schwartz

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Deborah O. Jung

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Erfan Eilati

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Erin D. Froeter

Southern Illinois University Carbondale

View shared research outputs
Researchain Logo
Decentralizing Knowledge