Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stacey Melquist is active.

Publication


Featured researches published by Stacey Melquist.


Nature | 2006

Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17.

Matt Baker; Ian R. Mackenzie; Stuart Pickering-Brown; Jennifer Gass; Rosa Rademakers; Caroline Lindholm; Julie S. Snowden; Jennifer Adamson; A. Dessa Sadovnick; Sara Rollinson; Ashley Cannon; Emily Dwosh; David Neary; Stacey Melquist; Anna Richardson; Dennis W. Dickson; Zdenek Berger; Jason L. Eriksen; Todd Robinson; Cynthia Zehr; Chad A. Dickey; Richard Crook; Eileen McGowan; David Mann; Bradley F. Boeve; Howard Feldman; Mike Hutton

Frontotemporal dementia (FTD) is the second most common cause of dementia in people under the age of 65 years. A large proportion of FTD patients (35–50%) have a family history of dementia, consistent with a strong genetic component to the disease. In 1998, mutations in the gene encoding the microtubule-associated protein tau (MAPT) were shown to cause familial FTD with parkinsonism linked to chromosome 17q21 (FTDP-17). The neuropathology of patients with defined MAPT mutations is characterized by cytoplasmic neurofibrillary inclusions composed of hyperphosphorylated tau. However, in multiple FTD families with significant evidence for linkage to the same region on chromosome 17q21 (D17S1787–D17S806), mutations in MAPT have not been found and the patients consistently lack tau-immunoreactive inclusion pathology. In contrast, these patients have ubiquitin (ub)-immunoreactive neuronal cytoplasmic inclusions and characteristic lentiform ub-immunoreactive neuronal intranuclear inclusions. Here we demonstrate that in these families, FTD is caused by mutations in progranulin (PGRN) that are likely to create null alleles. PGRN is located 1.7 Mb centromeric of MAPT on chromosome 17q21.31 and encodes a 68.5-kDa secreted growth factor involved in the regulation of multiple processes including development, wound repair and inflammation. PGRN has also been strongly linked to tumorigenesis. Moreover, PGRN expression is increased in activated microglia in many neurodegenerative diseases including Creutzfeldt–Jakob disease, motor neuron disease and Alzheimers disease. Our results identify mutations in PGRN as a cause of neurodegenerative disease and indicate the importance of PGRN function for neuronal survival.


Cell | 2013

Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease.

Bin Zhang; Chris Gaiteri; Liviu-Gabriel Bodea; Zhi Wang; Joshua McElwee; Alexei Podtelezhnikov; Chunsheng Zhang; Tao Xie; Linh Tran; Radu Dobrin; Eugene M. Fluder; Bruce E. Clurman; Stacey Melquist; Manikandan Narayanan; Christine Suver; Hardik Shah; Milind Mahajan; Tammy Gillis; Jayalakshmi S. Mysore; Marcy E. MacDonald; John Lamb; David A. Bennett; Cliona Molony; David J. Stone; Vilmundur Gudnason; Amanda J. Myers; Eric E. Schadt; Harald Neumann; Jun Zhu; Valur Emilsson

The genetics of complex disease produce alterations in the molecular interactions of cellular pathways whose collective effect may become clear through the organized structure of molecular networks. To characterize molecular systems associated with late-onset Alzheimers disease (LOAD), we constructed gene-regulatory networks in 1,647 postmortem brain tissues from LOAD patients and nondemented subjects, and we demonstrate that LOAD reconfigures specific portions of the molecular interaction structure. Through an integrative network-based approach, we rank-ordered these network structures for relevance to LOAD pathology, highlighting an immune- and microglia-specific module that is dominated by genes involved in pathogen phagocytosis, contains TYROBP as a key regulator, and is upregulated in LOAD. Mouse microglia cells overexpressing intact or truncated TYROBP revealed expression changes that significantly overlapped the human brain TYROBP network. Thus the causal network structure is a useful predictor of response to gene perturbations and presents a framework to test models of disease mechanisms underlying LOAD.


Neuron | 2007

GAB2 Alleles Modify Alzheimer's Risk in APOE ε4 Carriers

Eric M. Reiman; Jennifer A. Webster; Amanda J. Myers; John Hardy; Travis Dunckley; Victoria Zismann; Keta Joshipura; John V. Pearson; Diane Hu-Lince; Matthew J. Huentelman; David Craig; Keith D. Coon; Winnie S. Liang; RiLee H. Herbert; Thomas G. Beach; Kristen Rohrer; Alice S. Zhao; Doris Leung; Leslie Bryden; Lauren Marlowe; Mona Kaleem; Diego Mastroeni; Andrew Grover; Christopher B. Heward; Rivka Ravid; Joseph Rogers; Mike Hutton; Stacey Melquist; R. C. Petersen; Gene E. Alexander

The apolipoprotein E (APOE) epsilon4 allele is the best established genetic risk factor for late-onset Alzheimers disease (LOAD). We conducted genome-wide surveys of 502,627 single-nucleotide polymorphisms (SNPs) to characterize and confirm other LOAD susceptibility genes. In epsilon4 carriers from neuropathologically verified discovery, neuropathologically verified replication, and clinically characterized replication cohorts of 1411 cases and controls, LOAD was associated with six SNPs from the GRB-associated binding protein 2 (GAB2) gene and a common haplotype encompassing the entire GAB2 gene. SNP rs2373115 (p = 9 x 10(-11)) was associated with an odds ratio of 4.06 (confidence interval 2.81-14.69), which interacts with APOE epsilon4 to further modify risk. GAB2 was overexpressed in pathologically vulnerable neurons; the Gab2 protein was detected in neurons, tangle-bearing neurons, and dystrophic neuritis; and interference with GAB2 gene expression increased tau phosphorylation. Our findings suggest that GAB2 modifies LOAD risk in APOE epsilon4 carriers and influences Alzheimers neuropathology.


BMC Neurology | 2008

APOE ε4 lowers age at onset and is a high risk factor for Alzheimer's disease; A case control study from central Norway

Sigrid Botne Sando; Stacey Melquist; Ashley Cannon; Mike Hutton; Olav Sletvold; Ingvild Saltvedt; Linda R. White; Stian Lydersen; Jan O. Aasly

BackgroundThe objective of this study was to analyze factors influencing the risk and timing of Alzheimers disease (AD) in central Norway. The APOE ε4 allele is the only consistently identified risk factor for late onset Alzheimers disease (LOAD). We have described the allele frequencies of the apolipoprotein E gene (APOE) in a large population of patients with AD compared to the frequencies in a cognitively-normal control group, and estimated the effect of the APOE ε4 allele on the risk and the age at onset of AD in this population.Methods376 patients diagnosed with AD and 561 cognitively-normal control individuals with no known first degree relatives with dementia were genotyped for the APOE alleles. Allele frequencies and genotypes in patients and control individuals were compared. Odds Ratio for developing AD in different genotypes was calculated.ResultsOdds Ratio (OR) for developing AD was significantly increased in carriers of the APOE ε4 allele compared to individuals with the APOE ε3/ε3 genotype. Individuals carrying APOE ε4/ε4 had OR of 12.9 for developing AD, while carriers of APOE ε2/ε4 and APOE ε3/ε4 had OR of 3.2 and 4.2 respectively. The effect of the APOE ε4 allele was weaker with increasing age. Carrying the APOE ε2 allele showed no significant protective effect against AD and did not influence age at onset of the disease. Onset in LOAD patients was significantly reduced in a dose dependent manner from 78.4 years in patients without the APOE ε4 allele, to 75.3 in carriers of one APOE ε4 allele and 72.9 in carriers of two APOE ε4 alleles. Age at onset in early onset AD (EOAD) was not influenced by APOE ε4 alleles.ConclusionAPOE ε4 is a very strong risk factor for AD in the population of central Norway, and lowers age at onset of LOAD significantly.


Neurobiology of Aging | 2010

Evidence for an association between KIBRA and late-onset Alzheimer's disease

Jason J. Corneveaux; Winnie S. Liang; Eric M. Reiman; Jennifer A. Webster; Amanda J. Myers; Victoria Zismann; Keta Joshipura; John V. Pearson; Diane Hu-Lince; David Craig; Keith D. Coon; Travis Dunckley; Daniel Bandy; Wendy Lee; Kewei Chen; Thomas G. Beach; Diego Mastroeni; Andrew Grover; Rivka Ravid; Sigrid Botne Sando; Jan O. Aasly; Reinhard Heun; Frank Jessen; Heike Kölsch; Joseph G. Rogers; Mike Hutton; Stacey Melquist; R. C. Petersen; Gene E. Alexander; Richard J. Caselli

We recently reported evidence for an association between the individual variation in normal human episodic memory and a common variant of the KIBRA gene, KIBRA rs17070145 (T-allele). Since memory impairment is a cardinal clinical feature of Alzheimers disease (AD), we investigated the possibility of an association between the KIBRA gene and AD using data from neuronal gene expression, brain imaging studies, and genetic association tests. KIBRA was significantly over-expressed and three of its four known binding partners under-expressed in AD-affected hippocampal, posterior cingulate and temporal cortex regions (P<0.010, corrected) in a study of laser-capture microdissected neurons. Using positron emission tomography in a cohort of cognitively normal, late-middle-aged persons genotyped for KIBRA rs17070145, KIBRA T non-carriers exhibited lower glucose metabolism than did carriers in posterior cingulate and precuneus brain regions (P<0.001, uncorrected). Lastly, non-carriers of the KIBRA rs17070145 T-allele had increased risk of late-onset AD in an association study of 702 neuropathologically verified expired subjects (P=0.034; OR=1.29) and in a combined analysis of 1026 additional living and expired subjects (P=0.039; OR=1.26). Our findings suggest that KIBRA is associated with both individual variation in normal episodic memory and predisposition to AD.


American Journal of Human Genetics | 2007

Identification of a Novel Risk Locus for Progressive Supranuclear Palsy by a Pooled Genomewide Scan of 500,288 Single-Nucleotide Polymorphisms

Stacey Melquist; David Craig; Matthew J. Huentelman; Richard Crook; John V. Pearson; Matt Baker; Victoria Zismann; Jennifer Gass; Jennifer Adamson; Szabolcs Szelinger; Jason J. Corneveaux; Ashley Cannon; Keith D. Coon; Sarah Lincoln; Charles H. Adler; Paul Tuite; Donald B. Calne; Eileen H. Bigio; Ryan J. Uitti; Zbigniew K. Wszolek; Lawrence I. Golbe; Richard J. Caselli; Neill R. Graff-Radford; Irene Litvan; Matthew J. Farrer; Dennis W. Dickson; Mike Hutton; Dietrich A. Stephan

To date, only the H1 MAPT haplotype has been consistently associated with risk of developing the neurodegenerative disease progressive supranuclear palsy (PSP). We hypothesized that additional genetic loci may be involved in conferring risk of PSP that could be identified through a pooling-based genomewide association study of >500,000 SNPs. Candidate SNPs with large differences in allelic frequency were identified by ranking all SNPs by their probe-intensity difference between cohorts. The MAPT H1 haplotype was strongly detected by this methodology, as was a second major locus on chromosome 11p12-p11 that showed evidence of association at allelic (P<.001), genotypic (P<.001), and haplotypic (P<.001) levels and was narrowed to a single haplotype block containing the DNA damage-binding protein 2 (DDB2) and lysosomal acid phosphatase 2 (ACP2) genes. Since DNA damage and lysosomal dysfunction have been implicated in aging and neurodegenerative processes, both genes are viable candidates for conferring risk of disease.


Neurology | 2008

Study of a Swiss dopa-responsive dystonia family with a deletion in GCH1: Redefining DYT14 as DYT5

Christian Wider; Stacey Melquist; M. Hauf; Alessandra Solida; Stephanie A. Cobb; Jennifer M. Kachergus; Jennifer Gass; Keith D. Coon; Matt Baker; Ashley Cannon; Dietrich A. Stephan; D Schorderet; J. Ghika; Pierre Burkhard; Gregory Kapatos; Mike Hutton; Matthew J. Farrer; Zbigniew K. Wszolek; François Vingerhoets

Objective: To report the study of a multigenerational Swiss family with dopa-responsive dystonia (DRD). Methods: Clinical investigation was made of available family members, including historical and chart reviews. Subject examinations were video recorded. Genetic analysis included a genome-wide linkage study with microsatellite markers (STR), GTP cyclohydrolase I (GCH1) gene sequencing, and dosage analysis. Results: We evaluated 32 individuals, of whom 6 were clinically diagnosed with DRD, with childhood-onset progressive foot dystonia, later generalizing, followed by parkinsonism in the two older patients. The response to levodopa was very good. Two additional patients had late onset dopa-responsive parkinsonism. Three other subjects had DRD symptoms on historical grounds. We found suggestive linkage to the previously reported DYT14 locus, which excluded GCH1. However, further study with more stringent criteria for disease status attribution showed linkage to a larger region, which included GCH1. No mutation was found in GCH1 by gene sequencing but dosage methods identified a novel heterozygous deletion of exons 3 to 6 of GCH1. The mutation was found in seven subjects. One of the patients with dystonia represented a phenocopy. Conclusions: This study rules out the previously reported DYT14 locus as a cause of disease, as a novel multiexonic deletion was identified in GCH1. This work highlights the necessity of an accurate clinical diagnosis in linkage studies as well as the need for appropriate allele frequencies, penetrance, and phenocopy estimates. Comprehensive sequencing and dosage analysis of known genes is recommended prior to genome-wide linkage analysis. GLOSSARY: DRD = dopa-responsive dystonia; GCH1 = GTP cyclohydrolase I; SNP = single nucleotide polymorphisms; STR = short tandem repeats.


Molecular Systems Biology | 2014

Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases

Manikandan Narayanan; Jimmy Huynh; Kai Wang; Xia Yang; Seungyeul Yoo; Joshua McElwee; Bin Zhang; Chunsheng Zhang; John Lamb; Tao Xie; Christine Suver; Cliona Molony; Stacey Melquist; Andrew D. Johnson; Guoping Fan; David J. Stone; Eric E. Schadt; Patrizia Casaccia; Valur Emilsson; Jun Zhu

Using expression profiles from postmortem prefrontal cortex samples of 624 dementia patients and non‐demented controls, we investigated global disruptions in the co‐regulation of genes in two neurodegenerative diseases, late‐onset Alzheimers disease (AD) and Huntingtons disease (HD). We identified networks of differentially co‐expressed (DC) gene pairs that either gained or lost correlation in disease cases relative to the control group, with the former dominant for both AD and HD and both patterns replicating in independent human cohorts of AD and aging. When aligning networks of DC patterns and physical interactions, we identified a 242‐gene subnetwork enriched for independent AD/HD signatures. This subnetwork revealed a surprising dichotomy of gained/lost correlations among two inter‐connected processes, chromatin organization and neural differentiation, and included DNA methyltransferases, DNMT1 and DNMT3A, of which we predicted the former but not latter as a key regulator. To validate the inter‐connection of these two processes and our key regulator prediction, we generated two brain‐specific knockout (KO) mice and show that Dnmt1 KO signature significantly overlaps with the subnetwork (P = 3.1 × 10−12), while Dnmt3a KO signature does not (P = 0.017).


Mechanisms of Ageing and Development | 2005

LRRK2 mutations are not common in Alzheimer's disease

Mathias Toft; Sigrid Botne Sando; Stacey Melquist; Owen A. Ross; Linda R. White; Jan O. Aasly; Matthew J. Farrer

The development of common age-related neurodegenerative disorders as Parkinsons disease and Alzheimers disease (AD) are influenced by genetic factors. Recently, pathogenic mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been identified in familial Parkinsonism. Individuals in some of these families developed symptoms of dementia with Lewy-bodies and AD. The LRRK2 gene is also located within a locus on chromosome 12 reported in late-onset AD, and is therefore a good candidate gene for dementia. A series of 242 patients from Norway diagnosed clinically with dementia were included in the study, the majority were diagnosed with AD. Individuals were screened for the presence of seven known pathogenic mutations previously reported in the LRRK2 gene. We did not identify LRRK2 mutations in our series of dementia patients, indicating that known pathogenic mutations are not common in patients clinically diagnosed with AD. However, these results do not exclude a possible role of other genetic variants within the LRRK2 gene in AD or other forms of dementia.


International Journal of Geriatric Psychiatry | 2008

Risk-reducing effect of education in Alzheimer's disease

Sigrid Botne Sando; Stacey Melquist; Ashley Cannon; Mike Hutton; Olav Sletvold; Ingvild Saltvedt; Linda R. White; Stian Lydersen; Jan O. Aasly

To estimate the effect of education on the risk of Alzheimers disease (AD).

Collaboration


Dive into the Stacey Melquist's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith D. Coon

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jan O. Aasly

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sigrid Botne Sando

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Dietrich A. Stephan

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Craig

Translational Genomics Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge