Stacia Furtado
Brown University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stacia Furtado.
Advanced Drug Delivery Reviews | 2013
Sasha Bakhru; Stacia Furtado; A. Peter Morello; Edith Mathiowitz
Successful administration of therapeutic proteins via the oral route has long eluded the drug delivery community; a variety of factors, both physical and physiological, have hindered the myriad approaches to increasing the bioavailability of orally administered therapeutic proteins, including: 1) pre-systemic degradation by enzymes and 2) poor penetration of the intestinal mucosa and epithelium. Even when bypassing the harsh, acidic environment of the stomach, the intestines pose significant obstacles to systemic uptake. For example, the lining of the gastrointestinal tract comprises a thick wall of epithelial cells covered by a layer of polysaccharides and mucus. In this review, we will discuss the biology underlying intestinal uptake of protein-containing, biodegradable nanoparticles, review insulin delivery as the most accepted model for oral delivery of proteins, and present a variety of new material systems enabling novel approaches to oral protein delivery which we believe will bring to bear the next therapeutic advances in our field.
Journal of Controlled Release | 2013
J. Reineke; Daniel Y. Cho; Y.L. Dingle; Peter Cheifetz; Bryan Laulicht; D. Lavin; Stacia Furtado; Edith Mathiowitz
There has been increasing interest in developing bioadhesive nanoparticles due to their great potential as carriers for therapeutics in oral drug delivery systems. Despite decades of research, such a system still has not been successfully implemented. This paper demonstrates the enormous potential of such engineered systems: the incorporation of a bioadhesive coating, poly(butadiene-maleic anhydride-co-L-DOPA) (PBMAD), to non-bioadhesive nanospheres resulted in an enhancement of particle uptake in the small intestine from 5.8±1.9% to 66.9±12.9%. Direct correlation was obtained between bulk tensile strength, in vitro binding to everted intestinal sacs and quantitative in vivo uptake; this data suggests that bulk properties of polymers can be used to predict bioadhesive properties of nano- and microparticles. The differential distribution of the nanospheres to various tissues following uptake suggests surface chemistry plays a significant role in their localization within the body. The results of these studies provide strong support for the use of bioadhesive polymers to enhance nano- and micro-particle uptake from the small intestine for oral drug delivery.
Acta Biomaterialia | 2013
Danya M. Lavin; Linda Zhang; Stacia Furtado; Richard A. Hopkins; Edith Mathiowitz
Wet spun microfibers have great potential for the design of multifunctional controlled release scaffolds. Understanding aspects of drug delivery and mechanical strength, specific to protein molecular weight, may aid in the optimization and development of wet spun fiber platforms. This study investigated the intrinsic material properties and release kinetics of poly(l-lactic acid) (PLLA) and poly(lactic-co-glycolic acid) (PLGA) wet spun microfibers encapsulating proteins with varying molecular weights. A cryogenic emulsion technique developed in our laboratory was used to encapsulate insulin (5.8 kDa), lysozyme (14.3 kDa) and bovine serum albumin (BSA, 66.0 kDa) within wet spun microfibers (~100 μm). Protein loading was found to significantly influence mechanical strength and drug release kinetics of PLGA and PLLA microfibers in a molecular-weight-dependent manner. BSA encapsulation resulted in the most significant decrease in strength and ductility for both PLGA and PLLA microfibers. Interestingly, BSA-loaded PLGA microfibers had a twofold increase (8±2 MPa to 16±1 MPa) in tensile strength and a fourfold increase (3±1% to 12±6%) in elongation until failure in comparison to PLLA microfibers. PLGA and PLLA microfibers exhibited prolonged protein release up to 63 days in vitro. Further analysis with the Korsmeyer-Peppas kinetic model determined that the mechanism of protein release was dependent on Fickian diffusion. These results emphasize the critical role protein molecular weight has on the properties of wet spun filaments, highlighting the importance of designing small molecular analogues to replace growth factors with large molecular weights.
Cancer Research | 2014
Allen Y. Chung; Qingsheng Li; Sarah J. Blair; Magdia De Jesus; Kristen L. Dennis; Charles LeVea; Jin Yao; Yijun Sun; Thomas F. Conway; Lauren P. Virtuoso; Nicholas G. Battaglia; Stacia Furtado; Edith Mathiowitz; Nicholas J. Mantis; Khashayarsha Khazaie; Nejat K. Egilmez
Immune dysregulation drives the pathogenesis of chronic inflammatory, autoimmune, and dysplastic disorders. While often intended to address localized pathology, most immune modulatory therapies are administered systemically and carry inherent risk of multiorgan toxicities. Here, we demonstrate, in a murine model of spontaneous gastrointestinal polyposis, that site-specific uptake of orally administered IL10 microparticles ameliorates local and systemic disease to enhance survival. Mechanistic investigations showed that the therapeutic benefit of this treatment derived from neutralization of disease-promoting FoxP3(+)RoRγt(+)IL17(+) pathogenic T-regulatory cells (pgTreg), with a concomitant restoration of FoxP3(+)RoRγt(-)IL17(-) conventional T-regulatory cells (Treg). These findings provide a proof-of-principle for the ability of an oral biologic to restore immune homeostasis at the intestinal surface. Furthermore, they implicate local manipulation of IL10 as a tractable therapeutic strategy to address the inflammatory sequelae associated with mucosal premalignancy.
Acta Biomaterialia | 2012
Danya M. Lavin; Robert M. Stefani; Linda Zhang; Stacia Furtado; Richard A. Hopkins; Edith Mathiowitz
The strength and stability of hybrid fiber delivery systems, ones that perform a mechanical function and simultaneously deliver drug, are critical in the design of surgically implantable constructs. We report the fabrication of drug-eluting microfibers where drug loading and processing conditions alone increase microfiber strength and stability partially due to solvent-induced crystallization. Poly(L-lactic acid) microfibers of 64±7 μm diameter were wet spun by phase inversion. Encapsulation of a model hydrophobic anti-inflammatory drug, dexamethasone, at high loading provided stability to microfibers which maintained linear cumulative release kinetics up to 8 weeks in vitro. In our wet spinning process, all microfibers had increased crystallinity (13-17%) in comparison to unprocessed polymer without any mechanical stretching. Moreover, microfibers with the highest drug loading retained 97% of initial tensile strength and were statistically stronger than all other microfiber formulations, including control fibers without drug. Results indicate that the encapsulation of small hydrophobic molecules (<400 Da) may increase the mechanical integrity of microfilaments whose crystallinity is also increased as a result of the process. Multifunctional drug-eluting microfibers can provide an exciting new opportunity to design novel biomaterials with mechanical stability and controlled release of a variety of therapeutics with micron-scale accuracy.
Macromolecular Bioscience | 2012
Bryan Laulicht; Alexis Mancini; Nathanael Geman; Daniel Cho; Kenneth M. Estrellas; Stacia Furtado; Russell Hopson; Anubhav Tripathi; Edith Mathiowitz
The one-step synthesis and characterization of novel bioinspired bioadhesive polymers that contain Dopa, implicated in the extremely adhesive byssal fibers of certain gastropods, is reported. The novel polymers consist of combinations of either of two polyanhydride backbones and one of three amino acids, phenylalanine, tyrosine, or Dopa, grafted as side chains. Dopa-grafted hydrophobic backbone polymers exhibit as much as 2.5 × the fracture strength and 2.8 × the tensile work of bioadhesion of a commercially available poly(acrylic acid) derivative as tested on live, excised, rat intestinal tissue.
Cancer Research | 2013
Jingxuan Shan; Shoba P Dsouza; Sasha Bakhru; Eman K. Al-Azwani; Maria Libera Ascierto; Konduru S. Sastry; Shahinaz Bedri; Dhanya Kizhakayil; Idil I. Aigha; Joel A. Malek; Issam Al-Bozom; Salah Gehani; Stacia Furtado; Edith Mathiowitz; Ena Wang; Francesco M. Marincola; Lotfi Chouchane
Although the linkage between germline mutations of BRCA1 and hereditary breast/ovarian cancers is well established, recent evidence suggests that altered expression of wild-type BRCA1 might contribute to the sporadic forms of breast cancer. The breast cancer gene trinucleotide-repeat-containing 9 (TNRC9; TOX3) has been associated with disease susceptibility but its function is undetermined. Here, we report that TNRC9 is often amplified and overexpressed in breast cancer, particularly in advanced breast cancer. Gene amplification was associated with reduced disease-free and metastasis-free survival rates. Ectopic expression of TNRC9 increased breast cancer cell proliferation, migration, and survival after exposure to apoptotic stimuli. These phenotypes were associated with tumor progression in a mouse model of breast cancer. Gene expression profiling, protein analysis, and in silico assays of large datasets of breast and ovarian cancer samples suggested that TNRC9 and BRCA1 expression were inversely correlated. Notably, we found that TNRC9 bound to both the BRCA1 promoter and the cAMP-responsive element-binding protein (CREB) complex, a regulator of BRCA1 transcription. In support of this connection, expression of TNRC9 downregulated expression of BRCA1 by altering the methylation status of its promoter. Our studies unveil a function for TNRC9 in breast cancer that highlights a new paradigm in BRCA1 regulation.
Journal of Microencapsulation | 2012
Roshni S. Patel; Daniel Y. Cho; Cheng Tian; Amy Chang; Kenneth M. Estrellas; Danya M. Lavin; Stacia Furtado; Edith Mathiowitz
We report on the development of a modified solvent removal method for the encapsulation of hydrophilic drugs within poly(lactic-co-glycolic acid) (PLGA). Using a water/oil/oil double emulsion, hydrophilic doxycycline was encapsulated within PLGA spheres with particle diameters ranging from approximately 600 nm to 19 µm. Encapsulation efficiencies of up to 74% were achieved for theoretical loadings from 1% to 10% (w/w), with biphasic release over 85 days with nearly complete release at the end of this time course. About 1% salt was added to the formulations to examine its effects on doxycycline release; salt modulated release only by increasing the magnitude of initial release without altering kinetics. Fourier transform infrared spectroscopy indicated no characteristic differences between doxycycline-loaded and control spheres. Differential scanning calorimetry and X-ray diffraction suggest that there may be a molecular dispersion of the doxycycline within the spheres and the doxycycline may be in an amorphous state, which could explain the slow, prolonged release of the drug.
Journal of Crohns & Colitis | 2015
Thomas F. Conway; Laura Hammer; Stacia Furtado; Edith Mathiowitz; Ferdinando Nicoletti; Katia Mangano; Nejat K. Egilmez; Dominick L. Auci
BACKGROUND AND AIMS We investigated oral delivery of transforming growth factor beta 1 [TGFβ]- and all-trans retinoic acid [ATRA]-loaded microspheres as therapy for gut inflammation in murine models of inflammatory bowel disease [IBD]. METHODS ATRA and TGFβ were separately encapsulated in poly [lactic-co-glycolic] acid or polylactic acid microspheres [respectively]. TGFβ was encapsulated using proprietary phase-inversion nanoencapsulation [PIN] technology. RESULTS PIN particles provided sustained release of bioactive protein for at least 4 days and were stable for up to 52 weeks when stored at either 4(0)C or -20(0)C. In the SCID mouse CD4 + CD25- T cell transfer model of IBD, oral treatment starting at disease onset prevented weight loss, significantly reduced average disease score [~ 50%], serum amyloid A levels [~ 5-fold], colon weight-to-length ratio [~ 50%], and histological score [~ 5-fold]. CONCLUSIONS Both agents given together outperformed either separately. Highest TGFβ doses and most frequent dose schedule were most effective. Activity was associated with a significant increase [45%] in Foxp3 expression by colonic lamina propria CD4+ CD25+ T-cells. Activity was also demonstrated in dextran sulphate sodium-induced colitis. The data support development of the combination product as a novel, targeted immune based therapy for treatment for IBD.
Toxicologic Pathology | 2014
Yuval Ramot; Raul A. Brauner; Kongbin Kang; John V. Heymach; Stacia Furtado; Abraham Nyska
The analysis of organ vasculature, and more specifically organ microvasculature, carries special importance for toxicological sciences, and especially for evaluation of drug-induced vascular toxicity. This field presents a special challenge in nonclinical drug safety assessments since there are currently no reliable microvascular toxicity biomarkers. Therefore, we aimed to systematically investigate the use of microvascular 3D geometrical analysis of corrosion casts for evaluation of drug-induced vascular toxicity, utilizing a novel image investigation tool that allows full 3D-quantified geometrical analysis of the entire vascular tree structure. Vascular casts of kidneys from control and low- and high-dose ephedrine/caffeine-treated mice were scanned by a micro CT, and images were processed and analyzed using the VasculomicsTM platform. All evaluations were performed on the kidney cortex. Treatment resulted in a significant and dose-related reduction in overall microvessel density throughout the kidney cortex. This effect was most pronounced for vessels with diameters between 25 µm and 35 µm, and affected mostly vessels located in the superficial part of the kidney cortex. The use of 3D analysis tools in drug-induced vascular toxicity studies allows for very high resolution and characterization of drug effects on the microvasculature and can be used as a valuable tool in drug safety assessments.