Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stacy Ciufo is active.

Publication


Featured researches published by Stacy Ciufo.


Nucleic Acids Research | 2016

Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation

Nuala A. O'Leary; Mathew W. Wright; J. Rodney Brister; Stacy Ciufo; Diana Haddad; Richard McVeigh; Bhanu Rajput; Barbara Robbertse; Brian Smith-White; Danso Ako-adjei; Alexander Astashyn; Azat Badretdin; Yiming Bao; Olga Blinkova; Vyacheslav Brover; Vyacheslav Chetvernin; Jinna Choi; Eric Cox; Olga Ermolaeva; Catherine M. Farrell; Tamara Goldfarb; Tripti Gupta; Daniel H. Haft; Eneida Hatcher; Wratko Hlavina; Vinita Joardar; Vamsi K. Kodali; Wenjun Li; Donna Maglott; Patrick Masterson

The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55 000 organisms (>4800 viruses, >40 000 prokaryotes and >10 000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management.


Nucleic Acids Research | 2014

RefSeq microbial genomes database: new representation and annotation strategy

Tatiana Tatusova; Stacy Ciufo; Boris Fedorov; Kathleen ONeill; Igor Tolstoy

The source of the microbial genomic sequences in the RefSeq collection is the set of primary sequence records submitted to the International Nucleotide Sequence Database public archives. These can be accessed through the Entrez search and retrieval system at http://www.ncbi.nlm.nih.gov/genome. Next-generation sequencing has enabled researchers to perform genomic sequencing at rates that were unimaginable in the past. Microbial genomes can now be sequenced in a matter of hours, which has led to a significant increase in the number of assembled genomes deposited in the public archives. This huge increase in DNA sequence data presents new challenges for the annotation, analysis and visualization bioinformatics tools. New strategies have been developed for the annotation and representation of reference genomes and sequence variations derived from population studies and clinical outbreaks.


Nucleic Acids Research | 2009

The National Center for Biotechnology Information's Protein Clusters Database

William Klimke; Richa Agarwala; Azat Badretdin; Slava Chetvernin; Stacy Ciufo; Boris Fedorov; Boris Kiryutin; Kathleen O’Neill; Wolfgang Resch; Sergei Resenchuk; Susan C. Schafer; Igor Tolstoy; Tatiana Tatusova

Rapid increases in DNA sequencing capabilities have led to a vast increase in the data generated from prokaryotic genomic studies, which has been a boon to scientists studying micro-organism evolution and to those who wish to understand the biological underpinnings of microbial systems. The NCBI Protein Clusters Database (ProtClustDB) has been created to efficiently maintain and keep the deluge of data up to date. ProtClustDB contains both curated and uncurated clusters of proteins grouped by sequence similarity. The May 2008 release contains a total of 285 386 clusters derived from over 1.7 million proteins encoded by 3806 nt sequences from the RefSeq collection of complete chromosomes and plasmids from four major groups: prokaryotes, bacteriophages and the mitochondrial and chloroplast organelles. There are 7180 clusters containing 376 513 proteins with curated gene and protein functional annotation. PubMed identifiers and external cross references are collected for all clusters and provide additional information resources. A suite of web tools is available to explore more detailed information, such as multiple alignments, phylogenetic trees and genomic neighborhoods. ProtClustDB provides an efficient method to aggregate gene and protein annotation for researchers and is available at http://www.ncbi.nlm.nih.gov/sites/entrez?db=proteinclusters.


Nucleic Acids Research | 2015

Update on RefSeq microbial genomes resources

Tatiana Tatusova; Stacy Ciufo; Scott Federhen; Boris Fedorov; Richard McVeigh; Kathleen ONeill; Igor Tolstoy; Leonid Zaslavsky

NCBI RefSeq genome collection http://www.ncbi.nlm.nih.gov/genome represents all three major domains of life: Eukarya, Bacteria and Archaea as well as Viruses. Prokaryotic genome sequences are the most rapidly growing part of the collection. During the year of 2014 more than 10 000 microbial genome assemblies have been publicly released bringing the total number of prokaryotic genomes close to 30 000. We continue to improve the quality and usability of the microbial genome resources by providing easy access to the data and the results of the pre-computed analysis, and improving analysis and visualization tools. A number of improvements have been incorporated into the Prokaryotic Genome Annotation Pipeline. Several new features have been added to RefSeq prokaryotic genomes data processing pipeline including the calculation of genome groups (clades) and the optimization of protein clusters generation using pan-genome approach.


Database | 2016

From data repositories to submission portals: rethinking the role of domain-specific databases in CollecTF.

Sefa Kılıç; Dinara M. Sagitova; Shoshannah Wolfish; Benoit Bely; Mélanie Courtot; Stacy Ciufo; Tatiana Tatusova; Claire O’Donovan; Marcus C. Chibucos; María Martín; Ivan Erill

Domain-specific databases are essential resources for the biomedical community, leveraging expert knowledge to curate published literature and provide access to referenced data and knowledge. The limited scope of these databases, however, poses important challenges on their infrastructure, visibility, funding and usefulness to the broader scientific community. CollecTF is a community-oriented database documenting experimentally validated transcription factor (TF)-binding sites in the Bacteria domain. In its quest to become a community resource for the annotation of transcriptional regulatory elements in bacterial genomes, CollecTF aims to move away from the conventional data-repository paradigm of domain-specific databases. Through the adoption of well-established ontologies, identifiers and collaborations, CollecTF has progressively become also a portal for the annotation and submission of information on transcriptional regulatory elements to major biological sequence resources (RefSeq, UniProtKB and the Gene Ontology Consortium). This fundamental change in database conception capitalizes on the domain-specific knowledge of contributing communities to provide high-quality annotations, while leveraging the availability of stable information hubs to promote long-term access and provide high-visibility to the data. As a submission portal, CollecTF generates TF-binding site information through direct annotation of RefSeq genome records, definition of TF-based regulatory networks in UniProtKB entries and submission of functional annotations to the Gene Ontology. As a database, CollecTF provides enhanced search and browsing, targeted data exports, binding motif analysis tools and integration with motif discovery and search platforms. This innovative approach will allow CollecTF to focus its limited resources on the generation of high-quality information and the provision of specialized access to the data. Database URL: http://www.collectf.org/


Database | 2017

Improving taxonomic accuracy for fungi in public sequence databases: applying ‘one name one species’ in well-defined genera with Trichoderma/Hypocrea as a test case

Barbara Robbertse; Pooja K Strope; Priscila Chaverri; Romina Gazis; Stacy Ciufo; Michael Domrachev; Conrad L. Schoch

Abstract The ITS (nuclear ribosomal internal transcribed spacer) RefSeq database at the National Center for Biotechnology Information (NCBI) is dedicated to the clear association between name, specimen and sequence data. This database is focused on sequences obtained from type material stored in public collections. While the initial ITS sequence curation effort together with numerous fungal taxonomy experts attempted to cover as many orders as possible, we extended our latest focus to the family and genus ranks. We focused on Trichoderma for several reasons, mainly because the asexual and sexual synonyms were well documented, and a list of proposed names and type material were recently proposed and published. In this case study the recent taxonomic information was applied to do a complete taxonomic audit for the genus Trichoderma in the NCBI Taxonomy database. A name status report is available here: https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi. As a result, the ITS RefSeq Targeted Loci database at NCBI has been augmented with more sequences from type and verified material from Trichoderma species. Additionally, to aid in the cross referencing of data from single loci and genomes we have collected a list of quality records of the RPB2 gene obtained from type material in GenBank that could help validate future submissions. During the process of curation misidentified genomes were discovered, and sequence records from type material were found hidden under previous classifications. Source metadata curation, although more cumbersome, proved to be useful as confirmation of the type material designation. Database URL: http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353


Archive | 2016

Dealing with the Data Deluge – New Strategies in Prokaryotic Genome Analysis

Leonid Zaslavsky; Stacy Ciufo; Boris Fedorov; Boris Kiryutin; IgorTolstoy; Tatiana Tatusova

Recent technological innovations have ignited an explosion in microbial genome se‐ quencing that has fundamentally changed our understanding of biology of microbes and profoundly impacted public health policy. This huge increase in DNA sequence data presents new challenges for the annotation, analysis, and visualization bioinformatics tools. New strategies have been designed to bring an order to this genome sequence shockwave and improve the usability of associated data. Genomes are organized in a hi‐ erarchical distance tree using single-copy ribosomal protein marker distances for distance calculation. Protein distance measures dissimilarity between markers of the same type and the subsequent genomic distance averages over the majority of marker-distances, ig‐ noring the outliers. More than 30,000 genomes from public archives have been organized in a marker distance tree resulting in 6,438 species-level clades representing 7,597 taxo‐ nomic species. This computational infrastructure provides a foundation for prokaryotic gene and genome analysis, allowing easy access to pre-calculated genome groups at vari‐ ous distance levels. One of the most challenging problems in the current data deluge is the presentation of the relevant data at an appropriate resolution for each application, eliminating data redundancy but keeping biologically interesting variations.


BMC Bioinformatics | 2016

Clustering analysis of proteins from microbial genomes at multiple levels of resolution

Leonid Zaslavsky; Stacy Ciufo; Boris Fedorov; Tatiana Tatusova

BackgroundMicrobial genomes at the National Center for Biotechnology Information (NCBI) represent a large collection of more than 35,000 assemblies. There are several complexities associated with the data: a great variation in sampling density since human pathogens are densely sampled while other bacteria are less represented; different protein families occur in annotations with different frequencies; and the quality of genome annotation varies greatly. In order to extract useful information from these sophisticated data, the analysis needs to be performed at multiple levels of phylogenomic resolution and protein similarity, with an adequate sampling strategy.ResultsProtein clustering is used to construct meaningful and stable groups of similar proteins to be used for analysis and functional annotation. Our approach is to create protein clusters at three levels. First, tight clusters in groups of closely-related genomes (species-level clades) are constructed using a combined approach that takes into account both sequence similarity and genome context. Second, clustroids of conservative in-clade clusters are organized into seed global clusters. Finally, global protein clusters are built around the the seed clusters. We propose filtering strategies that allow limiting the protein set included in global clustering.The in-clade clustering procedure, subsequent selection of clustroids and organization into seed global clusters provides a robust representation and high rate of compression. Seed protein clusters are further extended by adding related proteins. Extended seed clusters include a significant part of the data and represent all major known cell machinery. The remaining part, coming from either non-conservative (unique) or rapidly evolving proteins, from rare genomes, or resulting from low-quality annotation, does not group together well. Processing these proteins requires significant computational resources and results in a large number of questionable clusters.ConclusionThe developed filtering strategies allow to identify and exclude such peripheral proteins limiting the protein dataset in global clustering. Overall, the proposed methodology allows the relevant data at different levels of details to be obtained and data redundancy eliminated while keeping biologically interesting variations.


Database | 2018

The NCBI BioCollections Database

Shobha Sharma; Stacy Ciufo; Elena Starchenko; Dakshesh Darji; Larry Chlumsky; Ilene Karsch-Mizrachi; Conrad L. Schoch

Abstract The rapidly growing set of GenBank submissions includes sequences that are derived from vouchered specimens. These are associated with culture collections, museums, herbaria and other natural history collections, both living and preserved. Correct identification of the specimens studied, along with a method to associate the sample with its institution, is critical to the outcome of related studies and analyses. The National Center for Biotechnology Information BioCollections Database was established to allow the association of specimen vouchers and related sequence records to their home institutions. This process also allows cross-linking from the home institution for quick identification of all records originating from each collection. Database URL: https://www.ncbi.nlm.nih.gov/biocollections


International Journal of Systematic and Evolutionary Microbiology | 2018

Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI

Stacy Ciufo; Sivakumar Kannan; Shobha Sharma; Azat Badretdin; Karen Clark; Sean Turner; Slava Brover; Conrad L. Schoch; Avi Kimchi; Michael DiCuccio

Average nucleotide identity analysis is a useful tool to verify taxonomic identities in prokaryotic genomes, for both complete and draft assemblies. Using optimum threshold ranges appropriate for different prokaryotic taxa, we have reviewed all prokaryotic genome assemblies in GenBank with regard to their taxonomic identity. We present the methods used to make such comparisons, the current status of GenBank verifications, and recent developments in confirming species assignments in new genome submissions.

Collaboration


Dive into the Stacy Ciufo's collaboration.

Top Co-Authors

Avatar

Tatiana Tatusova

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Boris Fedorov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Igor Tolstoy

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Leonid Zaslavsky

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Azat Badretdin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Conrad L. Schoch

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kathleen O’Neill

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boris Kiryutin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kathleen ONeill

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge