Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stacy Steinberg is active.

Publication


Featured researches published by Stacy Steinberg.


Nature | 2008

Large recurrent microdeletions associated with schizophrenia.

Hreinn Stefansson; Dan Rujescu; Sven Cichon; Olli Pietiläinen; Andres Ingason; Stacy Steinberg; Ragnheidur Fossdal; Engilbert Sigurdsson; T. Sigmundsson; Jacobine E. Buizer-Voskamp; Thomas V O Hansen; Klaus D. Jakobsen; Pierandrea Muglia; Clyde Francks; Paul M. Matthews; Arnaldur Gylfason; Bjarni V. Halldórsson; Daniel F. Gudbjartsson; Thorgeir E. Thorgeirsson; Asgeir Sigurdsson; Adalbjorg Jonasdottir; Aslaug Jonasdottir; Asgeir Björnsson; Sigurborg Mattiasdottir; Thorarinn Blondal; Magnus Haraldsson; Brynja B. Magnusdottir; Ina Giegling; Hans-Jürgen Möller; Annette M. Hartmann

Reduced fecundity, associated with severe mental disorders, places negative selection pressure on risk alleles and may explain, in part, why common variants have not been found that confer risk of disorders such as autism, schizophrenia and mental retardation. Thus, rare variants may account for a larger fraction of the overall genetic risk than previously assumed. In contrast to rare single nucleotide mutations, rare copy number variations (CNVs) can be detected using genome-wide single nucleotide polymorphism arrays. This has led to the identification of CNVs associated with mental retardation and autism. In a genome-wide search for CNVs associating with schizophrenia, we used a population-based sample to identify de novo CNVs by analysing 9,878 transmissions from parents to offspring. The 66 de novo CNVs identified were tested for association in a sample of 1,433 schizophrenia cases and 33,250 controls. Three deletions at 1q21.1, 15q11.2 and 15q13.3 showing nominal association with schizophrenia in the first sample (phase I) were followed up in a second sample of 3,285 cases and 7,951 controls (phase II). All three deletions significantly associate with schizophrenia and related psychoses in the combined sample. The identification of these rare, recurrent risk variants, having occurred independently in multiple founders and being subject to negative selection, is important in itself. CNV analysis may also point the way to the identification of additional and more prevalent risk variants in genes and pathways involved in schizophrenia.


Nature | 2009

Common variants conferring risk of schizophrenia

Hreinn Stefansson; Roel A. Ophoff; Stacy Steinberg; Ole A. Andreassen; Sven Cichon; Dan Rujescu; Thomas Werge; Olli Pietiläinen; Ole Mors; Preben Bo Mortensen; Engilbert Sigurdsson; Omar Gustafsson; Mette Nyegaard; Annamari Tuulio-Henriksson; Andres Ingason; Thomas Hansen; Jaana Suvisaari; Jouko Lönnqvist; Tiina Paunio; Anders D. Børglum; Annette M. Hartmann; Anders Fink-Jensen; Merete Nordentoft; David M. Hougaard; Bent Nørgaard-Pedersen; Yvonne Böttcher; Jes Olesen; René Breuer; Hans-Jürgen Möller; Ina Giegling

Schizophrenia is a complex disorder, caused by both genetic and environmental factors and their interactions. Research on pathogenesis has traditionally focused on neurotransmitter systems in the brain, particularly those involving dopamine. Schizophrenia has been considered a separate disease for over a century, but in the absence of clear biological markers, diagnosis has historically been based on signs and symptoms. A fundamental message emerging from genome-wide association studies of copy number variations (CNVs) associated with the disease is that its genetic basis does not necessarily conform to classical nosological disease boundaries. Certain CNVs confer not only high relative risk of schizophrenia but also of other psychiatric disorders. The structural variations associated with schizophrenia can involve several genes and the phenotypic syndromes, or the ‘genomic disorders’, have not yet been characterized. Single nucleotide polymorphism (SNP)-based genome-wide association studies with the potential to implicate individual genes in complex diseases may reveal underlying biological pathways. Here we combined SNP data from several large genome-wide scans and followed up the most significant association signals. We found significant association with several markers spanning the major histocompatibility complex (MHC) region on chromosome 6p21.3-22.1, a marker located upstream of the neurogranin gene (NRGN) on 11q24.2 and a marker in intron four of transcription factor 4 (TCF4) on 18q21.2. Our findings implicating the MHC region are consistent with an immune component to schizophrenia risk, whereas the association with NRGN and TCF4 points to perturbation of pathways involved in brain development, memory and cognition.


The New England Journal of Medicine | 2013

Variant of TREM2 Associated with the Risk of Alzheimer's Disease

Thorlakur Jonsson; Hreinn Stefansson; Stacy Steinberg; Ingileif Jonsdottir; Palmi V. Jonsson; Jon Snaedal; Sigurbjorn Bjornsson; Johanna Huttenlocher; Allan I. Levey; James J. Lah; Dan Rujescu; Harald Hampel; Ina Giegling; Ole A. Andreassen; Knut Engedal; Ingun Ulstein; Srdjan Djurovic; Carla A. Ibrahim-Verbaas; Albert Hofman; M. Arfan Ikram; Cornelia M. van Duijn; Unnur Thorsteinsdottir; Augustine Kong; Kari Stefansson

BACKGROUND Sequence variants, including the ε4 allele of apolipoprotein E, have been associated with the risk of the common late-onset form of Alzheimers disease. Few rare variants affecting the risk of late-onset Alzheimers disease have been found. METHODS We obtained the genome sequences of 2261 Icelanders and identified sequence variants that were likely to affect protein function. We imputed these variants into the genomes of patients with Alzheimers disease and control participants and then tested for an association with Alzheimers disease. We performed replication tests using case-control series from the United States, Norway, The Netherlands, and Germany. We also tested for a genetic association with cognitive function in a population of unaffected elderly persons. RESULTS A rare missense mutation (rs75932628-T) in the gene encoding the triggering receptor expressed on myeloid cells 2 (TREM2), which was predicted to result in an R47H substitution, was found to confer a significant risk of Alzheimers disease in Iceland (odds ratio, 2.92; 95% confidence interval [CI], 2.09 to 4.09; P=3.42×10(-10)). The mutation had a frequency of 0.46% in controls 85 years of age or older. We observed the association in additional sample sets (odds ratio, 2.90; 95% CI, 2.16 to 3.91; P=2.1×10(-12) in combined discovery and replication samples). We also found that carriers of rs75932628-T between the ages of 80 and 100 years without Alzheimers disease had poorer cognitive function than noncarriers (P=0.003). CONCLUSIONS Our findings strongly implicate variant TREM2 in the pathogenesis of Alzheimers disease. Given the reported antiinflammatory role of TREM2 in the brain, the R47H substitution may lead to an increased predisposition to Alzheimers disease through impaired containment of inflammatory processes. (Funded by the National Institute on Aging and others.).


Nature | 2012

Rate of de novo mutations and the importance of father/'s age to disease risk

Augustine Kong; Michael L. Frigge; Gisli Masson; Søren Besenbacher; Patrick Sulem; Gisli Magnusson; Sigurjon A. Gudjonsson; Asgeir Sigurdsson; Aslaug Jonasdottir; Adalbjorg Jonasdottir; Wendy S. W. Wong; Gunnar Sigurdsson; G. Bragi Walters; Stacy Steinberg; Hannes Helgason; Gudmar Thorleifsson; Daniel F. Gudbjartsson; Agnar Helgason; Olafur T. Magnusson; Unnur Thorsteinsdottir; Kari Stefansson

Mutations generate sequence diversity and provide a substrate for selection. The rate of de novo mutations is therefore of major importance to evolution. We conducted a study of genomewide mutation rate by sequencing the entire genomes of 78 Icelandic parent-offspring trios at high coverage. Here we show that in our samples, with an average father’s age of 29.7, the average de novo mutation rate is 1.20×10−8 per nucleotide per generation. Most strikingly, the diversity in mutation rate of single-nucleotide polymorphism (SNP) is dominated by the age of the father at conception of the child. The effect is an increase of about 2 mutations per year. After accounting for random Poisson variation, father’s age is estimated to explain nearly all of the remaining variation in the de novo mutation counts. These observations shed light on the importance of the father’s age on the risk of diseases such as schizophrenia and autism.


Nature | 2012

A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline

Thorlakur Jonsson; Jasvinder Atwal; Stacy Steinberg; Jon Snaedal; Palmi V. Jonsson; Sigurbjorn Bjornsson; Hreinn Stefansson; Patrick Sulem; Daniel F. Gudbjartsson; Janice Maloney; Kwame Hoyte; Amy Gustafson; Yichin Liu; Yanmei Lu; Tushar Bhangale; Robert R. Graham; Johanna Huttenlocher; Gyda Bjornsdottir; Ole A. Andreassen; Erik G. Jönsson; Aarno Palotie; Timothy W. Behrens; Olafur T. Magnusson; Augustine Kong; Unnur Thorsteinsdottir; Ryan J. Watts; Kari Stefansson

The prevalence of dementia in the Western world in people over the age of 60 has been estimated to be greater than 5%, about two-thirds of which are due to Alzheimer’s disease. The age-specific prevalence of Alzheimer’s disease nearly doubles every 5 years after age 65, leading to a prevalence of greater than 25% in those over the age of 90 (ref. 3). Here, to search for low-frequency variants in the amyloid-β precursor protein (APP) gene with a significant effect on the risk of Alzheimer’s disease, we studied coding variants in APP in a set of whole-genome sequence data from 1,795 Icelanders. We found a coding mutation (A673T) in the APP gene that protects against Alzheimer’s disease and cognitive decline in the elderly without Alzheimer’s disease. This substitution is adjacent to the aspartyl protease β-site in APP, and results in an approximately 40% reduction in the formation of amyloidogenic peptides in vitro. The strong protective effect of the A673T substitution against Alzheimer’s disease provides proof of principle for the hypothesis that reducing the β-cleavage of APP may protect against the disease. Furthermore, as the A673T allele also protects against cognitive decline in the elderly without Alzheimer’s disease, the two may be mediated through the same or similar mechanisms.


Nature Genetics | 2008

Many sequence variants affecting diversity of adult human height

Daniel F. Gudbjartsson; G. Bragi Walters; Gudmar Thorleifsson; Hreinn Stefansson; Bjarni V. Halldórsson; Pasha Zusmanovich; Patrick Sulem; Steinunn Thorlacius; Arnaldur Gylfason; Stacy Steinberg; Anna Helgadottir; Andres Ingason; Valgerdur Steinthorsdottir; Elinborg J Olafsdottir; Gudridur Olafsdottir; Thorvaldur Jonsson; Knut Borch-Johnsen; Torben Hansen; Gitte Andersen; Torben Jørgensen; Oluf Pedersen; Katja K. Aben; J. Alfred Witjes; Dorine W. Swinkels; Martin den Heijer; Barbara Franke; A.L.M. Verbeek; Diane M. Becker; Lisa R. Yanek; Lewis C. Becker

Adult human height is one of the classical complex human traits. We searched for sequence variants that affect height by scanning the genomes of 25,174 Icelanders, 2,876 Dutch, 1,770 European Americans and 1,148 African Americans. We then combined these results with previously published results from the Diabetes Genetics Initiative on 3,024 Scandinavians and tested a selected subset of SNPs in 5,517 Danes. We identified 27 regions of the genome with one or more sequence variants showing significant association with height. The estimated effects per allele of these variants ranged between 0.3 and 0.6 cm and, taken together, they explain around 3.7% of the population variation in height. The genes neighboring the identified loci cluster in biological processes related to skeletal development and mitosis. Association to three previously reported loci are replicated in our analyses, and the strongest association was with SNPs in the ZBTB38 gene.


Nature Genetics | 2007

Genetic determinants of hair, eye and skin pigmentation in Europeans

Patrick Sulem; Daniel F. Gudbjartsson; Simon N. Stacey; Agnar Helgason; Thorunn Rafnar; Kristinn P. Magnusson; Andrei Manolescu; Ari Karason; Arnar Palsson; Gudmar Thorleifsson; Margret Jakobsdottir; Stacy Steinberg; Snæbjörn Pálsson; Fridbert Jonasson; Bardur Sigurgeirsson; Kristin Thorisdottir; Rafn Ragnarsson; Kristrun R. Benediktsdottir; Katja K. Aben; Lambertus A. Kiemeney; Jón Ólafsson; Jeffrey R. Gulcher; A. Kong; Unnur Thorsteinsdottir; Kari Stefansson

Hair, skin and eye colors are highly heritable and visible traits in humans. We carried out a genome-wide association scan for variants associated with hair and eye pigmentation, skin sensitivity to sun and freckling among 2,986 Icelanders. We then tested the most closely associated SNPs from six regions—four not previously implicated in the normal variation of human pigmentation—and replicated their association in a second sample of 2,718 Icelanders and a sample of 1,214 Dutch. The SNPs from all six regions met the criteria for genome-wide significance. A variant in SLC24A4 is associated with eye and hair color, a variant near KITLG is associated with hair color, two coding variants in TYR are associated with eye color and freckles, and a variant on 6p25.3 is associated with freckles. The fifth region provided refinements to a previously reported association in OCA2, and the sixth encompasses previously described variants in MC1R.


Human Molecular Genetics | 2009

Disruption of the neurexin 1 gene is associated with schizophrenia

Dan Rujescu; Andres Ingason; Sven Cichon; Olli Pietiläinen; Michael R. Barnes; Timothea Toulopoulou; Marco Picchioni; Evangelos Vassos; Ulrich Ettinger; Elvira Bramon; Robin M. Murray; Mirella Ruggeri; Sarah Tosato; Chiara Bonetto; Stacy Steinberg; Engilbert Sigurdsson; T. Sigmundsson; Hannes Petursson; Arnaldur Gylfason; Pall Olason; Gudmundur Hardarsson; Gudrun A Jonsdottir; Omar Gustafsson; Ragnheidur Fossdal; Ina Giegling; Hans-Jürgen Möller; Annette M. Hartmann; Per Hoffmann; Caroline Crombie; Gillian M. Fraser

Deletions within the neurexin 1 gene (NRXN1; 2p16.3) are associated with autism and have also been reported in two families with schizophrenia. We examined NRXN1, and the closely related NRXN2 and NRXN3 genes, for copy number variants (CNVs) in 2977 schizophrenia patients and 33 746 controls from seven European populations (Iceland, Finland, Norway, Germany, The Netherlands, Italy and UK) using microarray data. We found 66 deletions and 5 duplications in NRXN1, including a de novo deletion: 12 deletions and 2 duplications occurred in schizophrenia cases (0.47%) compared to 49 and 3 (0.15%) in controls. There was no common breakpoint and the CNVs varied from 18 to 420 kb. No CNVs were found in NRXN2 or NRXN3. We performed a Cochran-Mantel-Haenszel exact test to estimate association between all CNVs and schizophrenia (P = 0.13; OR = 1.73; 95% CI 0.81-3.50). Because the penetrance of NRXN1 CNVs may vary according to the level of functional impact on the gene, we next restricted the association analysis to CNVs that disrupt exons (0.24% of cases and 0.015% of controls). These were significantly associated with a high odds ratio (P = 0.0027; OR 8.97, 95% CI 1.8-51.9). We conclude that NRXN1 deletions affecting exons confer risk of schizophrenia.


Nature | 2014

CNVs conferring risk of autism or schizophrenia affect cognition in controls

Hreinn Stefansson; Andreas Meyer-Lindenberg; Stacy Steinberg; Brynja B. Magnusdottir; Katrin Morgen; Sunna Arnarsdottir; Gyda Bjornsdottir; G. Bragi Walters; Gudrun A Jonsdottir; Orla M. Doyle; Heike Tost; Oliver Grimm; Solveig Kristjansdottir; Heimir Snorrason; Solveig R. Davidsdottir; Larus J. Gudmundsson; Gudbjorn F. Jonsson; Berglind Stefánsdóttir; Isafold Helgadottir; Magnus Haraldsson; Birna Jonsdottir; Johan H. Thygesen; Adam J. Schwarz; Michael Didriksen; Tine B. Stensbøl; Michael Brammer; Shitij Kapur; Jónas G. Halldórsson; Stefan J. Hreidarsson; Evald Saemundsen

In a small fraction of patients with schizophrenia or autism, alleles of copy-number variants (CNVs) in their genomes are probably the strongest factors contributing to the pathogenesis of the disease. These CNVs may provide an entry point for investigations into the mechanisms of brain function and dysfunction alike. They are not fully penetrant and offer an opportunity to study their effects separate from that of manifest disease. Here we show in an Icelandic sample that a few of the CNVs clearly alter fecundity (measured as the number of children by age 45). Furthermore, we use various tests of cognitive function to demonstrate that control subjects carrying the CNVs perform at a level that is between that of schizophrenia patients and population controls. The CNVs do not all affect the same cognitive domains, hence the cognitive deficits that drive or accompany the pathogenesis vary from one CNV to another. Controls carrying the chromosome 15q11.2 deletion between breakpoints 1 and 2 (15q11.2(BP1-BP2) deletion) have a history of dyslexia and dyscalculia, even after adjusting for IQ in the analysis, and the CNV only confers modest effects on other cognitive traits. The 15q11.2(BP1-BP2) deletion affects brain structure in a pattern consistent with both that observed during first-episode psychosis in schizophrenia and that of structural correlates in dyslexia.


Nature Genetics | 2010

Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1

Verneri Anttila; Hreinn Stefansson; Mikko Kallela; Unda Todt; Gisela M. Terwindt; M. S. Calafato; Dale R. Nyholt; Antigone S. Dimas; Tobias Freilinger; Bertram Müller-Myhsok; Ville Artto; Michael Inouye; Kirsi Alakurtti; Mari A. Kaunisto; Eija Hämäläinen; B.B.A. de Vries; Anine H. Stam; Claudia M. Weller; A. Heinze; K. Heinze-Kuhn; Ingrid Goebel; Guntram Borck; Hartmut Göbel; Stacy Steinberg; Christiane Wolf; Asgeir Björnsson; Gudmundur Gudmundsson; M. Kirchmann; A. Hauge; Thomas Werge

Migraine is a common episodic neurological disorder, typically presenting with recurrent attacks of severe headache and autonomic dysfunction. Apart from rare monogenic subtypes, no genetic or molecular markers for migraine have been convincingly established. We identified the minor allele of rs1835740 on chromosome 8q22.1 to be associated with migraine (P = 5.38 × 10−9, odds ratio = 1.23, 95% CI 1.150–1.324) in a genome-wide association study of 2,731 migraine cases ascertained from three European headache clinics and 10,747 population-matched controls. The association was replicated in 3,202 cases and 40,062 controls for an overall meta-analysis P value of 1.69 × 10−11 (odds ratio = 1.18, 95% CI 1.127–1.244). rs1835740 is located between MTDH (astrocyte elevated gene 1, also known as AEG-1) and PGCP (encoding plasma glutamate carboxypeptidase). In an expression quantitative trait study in lymphoblastoid cell lines, transcript levels of the MTDH were found to have a significant correlation to rs1835740 (P = 3.96 × 10−5, permuted threshold for genome-wide significance 7.7 × 10−5). To our knowledge, our data establish rs1835740 as the first genetic risk factor for migraine.

Collaboration


Dive into the Stacy Steinberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge