Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stamatios Lefkimmiatis is active.

Publication


Featured researches published by Stamatios Lefkimmiatis.


IEEE Transactions on Image Processing | 2012

Hessian-Based Norm Regularization for Image Restoration With Biomedical Applications

Stamatios Lefkimmiatis; Aurélien Bourquard; Michael Unser

We present nonquadratic Hessian-based regularization methods that can be effectively used for image restoration problems in a variational framework. Motivated by the great success of the total-variation (TV) functional, we extend it to also include second-order differential operators. Specifically, we derive second-order regularizers that involve matrix norms of the Hessian operator. The definition of these functionals is based on an alternative interpretation of TV that relies on mixed norms of directional derivatives. We show that the resulting regularizers retain some of the most favorable properties of TV, i.e., convexity, homogeneity, rotation, and translation invariance, while dealing effectively with the staircase effect. We further develop an efficient minimization scheme for the corresponding objective functions. The proposed algorithm is of the iteratively reweighted least-square type and results from a majorization-minimization approach. It relies on a problem-specific preconditioned conjugate gradient method, which makes the overall minimization scheme very attractive since it can be applied effectively to large images in a reasonable computational time. We validate the overall proposed regularization framework through deblurring experiments under additive Gaussian noise on standard and biomedical images.


IEEE Transactions on Image Processing | 2013

Hessian Schatten-Norm Regularization for Linear Inverse Problems

Stamatios Lefkimmiatis; John Paul Ward; Michael Unser

We introduce a novel family of invariant, convex, and non-quadratic functionals that we employ to derive regularized solutions of ill-posed linear inverse imaging problems. The proposed regularizers involve the Schatten norms of the Hessian matrix, which are computed at every pixel of the image. They can be viewed as second-order extensions of the popular total-variation (TV) semi-norm since they satisfy the same invariance properties. Meanwhile, by taking advantage of second-order derivatives, they avoid the staircase effect, a common artifact of TV-based reconstructions, and perform well for a wide range of applications. To solve the corresponding optimization problems, we propose an algorithm that is based on a primal-dual formulation. A fundamental ingredient of this algorithm is the projection of matrices onto Schatten norm balls of arbitrary radius. This operation is performed efficiently based on a direct link we provide between vector projections onto norm balls and matrix projections onto Schatten norm balls. Finally, we demonstrate the effectiveness of the proposed methods through experimental results on several inverse imaging problems with real and simulated data.


IEEE Transactions on Image Processing | 2009

Bayesian Inference on Multiscale Models for Poisson Intensity Estimation: Applications to Photon-Limited Image Denoising

Stamatios Lefkimmiatis; Petros Maragos; George Papandreou

We present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance. Experimental results on standard images with artificially simulated Poisson noise and on real photon-limited images demonstrate the effectiveness of the proposed techniques.


Siam Journal on Imaging Sciences | 2015

Structure Tensor Total Variation

Stamatios Lefkimmiatis; Anastasios Roussos; Petros Maragos; Michael Unser

We introduce a novel generic energy functional that we employ to solve inverse imaging problems within a variational framework. The proposed regularization family, termed as structure tensor total variation (STV), penalizes the eigenvalues of the structure tensor and is suitable for both grayscale and vector-valued images. It generalizes several existing variational penalties, including the total variation seminorm and vectorial extensions of it. Meanwhile, thanks to the structure tensors ability to capture first-order information around a local neighborhood, the STV functionals can provide more robust measures of image variation. Further, we prove that the STV regularizers are convex while they also satisfy several invariance properties w.r.t. image transformations. These properties qualify them as ideal candidates for imaging applications. In addition, for the discrete version of the STV functionals we derive an equivalent definition that is based on the patch-based Jacobian operator, a novel linear operator which extends the Jacobian matrix. This alternative definition allow us to derive a dual problem formulation. The duality of the problem paves the way for employing robust tools from convex optimization and enables us to design an efficient and parallelizable optimization algorithm. Finally, we present extensive experiments on various inverse imaging problems, where we compare our regularizers with other competing regularization approaches. Our results are shown to be systematically superior, both quantitatively and visually.


IEEE Transactions on Image Processing | 2013

Poisson Image Reconstruction With Hessian Schatten-Norm Regularization

Stamatios Lefkimmiatis; Michael Unser

Poisson inverse problems arise in many modern imaging applications, including biomedical and astronomical ones. The main challenge is to obtain an estimate of the underlying image from a set of measurements degraded by a linear operator and further corrupted by Poisson noise. In this paper, we propose an efficient framework for Poisson image reconstruction, under a regularization approach, which depends on matrix-valued regularization operators. In particular, the employed regularizers involve the Hessian as the regularization operator and Schatten matrix norms as the potential functions. For the solution of the problem, we propose two optimization algorithms that are specifically tailored to the Poisson nature of the noise. These algorithms are based on an augmented-Lagrangian formulation of the problem and correspond to two variants of the alternating direction method of multipliers. Further, we derive a link that relates the proximal map of an lp norm with the proximal map of a Schatten matrix norm of order p. This link plays a key role in the development of one of the proposed algorithms. Finally, we provide experimental results on natural and biological images for the task of Poisson image deblurring and demonstrate the practical relevance and effectiveness of the proposed framework.


Speech Communication | 2007

A generalized estimation approach for linear and nonlinear microphone array post-filters

Stamatios Lefkimmiatis; Petros Maragos

This paper presents a robust and general method for estimating the transfer functions of microphone array post-filters, derived under various speech enhancement criteria. For the case of the mean square error (MSE) criterion, the proposed method is an improvement of the existing McCowan post-filter, which under the assumption of a known noise field coherence function uses the auto- and cross-spectral densities of the microphone array noisy inputs to estimate the Wiener post-filter transfer function. In contrast to McCowan post-filter, the proposed method takes into account the noise reduction performed by the minimum variance distortionless response (MVDR) beamformer and obtains a more accurate estimation of the noise spectral density. Furthermore, the proposed estimation approach is general and can be used for the derivation of both linear and nonlinear microphone array post-filters, according to the utilized enhancement criterion. In experiments with real noise multichannel recordings the proposed technique has shown to obtain a significant gain over the other studied methods in terms of five different objective speech quality measures.


international conference on scale space and variational methods in computer vision | 2013

Convex Generalizations of Total Variation Based on the Structure Tensor with Applications to Inverse Problems

Stamatios Lefkimmiatis; Anastasios Roussos; Michael Unser; Petros Maragos

We introduce a generic convex energy functional that is suitable for both grayscale and vector-valued images. Our functional is based on the eigenvalues of the structure tensor, therefore it penalizes image variation at every point by taking into account the information from its neighborhood. It generalizes several existing variational penalties, such as the Total Variation and vectorial extensions of it. By introducing the concept of patch-based Jacobian operator, we derive an equivalent formulation of the proposed regularizer that is based on the Schatten norm of this operator. Using this new formulation, we prove convexity and develop a dual definition for the proposed energy, which gives rise to an efficient and parallelizable minimization algorithm. Moreover, we establish a connection between the minimization of the proposed convex regularizer and a generic type of nonlinear anisotropic diffusion that is driven by a spatially regularized and adaptive diffusion tensor. Finally, we perform extensive experiments with image denoising and deblurring for grayscale and color images. The results show the effectiveness of the proposed approach as well as its improved performance compared to Total Variation and existing vectorial extensions of it.


computer vision and pattern recognition | 2017

Non-local Color Image Denoising with Convolutional Neural Networks

Stamatios Lefkimmiatis

We propose a novel deep network architecture for grayscale and color image denoising that is based on a non-local image model. Our motivation for the overall design of the proposed network stems from variational methods that exploit the inherent non-local self-similarity property of natural images. We build on this concept and introduce deep networks that perform non-local processing and at the same time they significantly benefit from discriminative learning. Experiments on the Berkeley segmentation dataset, comparing several state-of-the-art methods, show that the proposed non-local models achieve the best reported denoising performance both for grayscale and color images for all the tested noise levels. It is also worth noting that this increase in performance comes at no extra cost on the capacity of the network compared to existing alternative deep network architectures. In addition, we highlight a direct link of the proposed non-local models to convolutional neural networks. This connection is of significant importance since it allows our models to take full advantage of the latest advances on GPU computing in deep learning and makes them amenable to efficient implementations through their inherent parallelism.


IEEE Transactions on Computational Imaging | 2015

Nonlocal Structure Tensor Functionals for Image Regularization

Stamatios Lefkimmiatis; Stanley Osher

We present a nonlocal regularization framework that we apply to inverse imaging problems. As opposed to existing nonlocal regularization methods that rely on the graph gradient as the regularization operator, we introduce a family of nonlocal energy functionals that involves the standard image gradient. Our motivation for designing these functionals is to exploit at the same time two important properties inherent in natural images, namely the local structural image regularity and the nonlocal image self-similarity. To this end, our regularizers employ as their regularization operator a novel nonlocal version of the structure tensor. This operator performs a nonlocal weighted average of the image gradients computed at every image location and, thus, is able to provide a robust measure of image variation. Furthermore, we show a connection of the proposed regularizers to the total variation semi-norm and prove convexity. The convexity property allows us to employ powerful tools from convex optimization to design an efficient minimization algorithm. Our algorithm is based on a splitting variable strategy, which leads to an augmented Lagrangian formulation. To solve the corresponding optimization problem, we employ the alternating-direction methods of multipliers. Finally, we present extensive experiments on several inverse imaging problems, where we compare our regularizers with other competing local and nonlocal regularization approaches. Our results are shown to be systematically superior, both quantitatively and visually.


international conference on image processing | 2012

A projected gradient algorithm for image restoration under Hessian matrix-norm regularization

Stamatios Lefkimmiatis; Michael Unser

We have recently introduced a class of non-quadratic Hessian-based regularizers as a higher-order extension of the total variation (TV) functional. These regularizers retain some of the most favorable properties of TV while they can effectively deal with the staircase effect that is commonly met in TV-based reconstructions. In this work we propose a novel gradient-based algorithm for the efficient minimization of these functionals under convex constraints. Furthermore, we validate the overall proposed regularization framework for the problem of image deblurring under additive Gaussian noise.

Collaboration


Dive into the Stamatios Lefkimmiatis's collaboration.

Top Co-Authors

Avatar

Michael Unser

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Petros Maragos

National Technical University of Athens

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cédric Vonesch

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Emrah Bostan

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Andres Saucedo

University of California

View shared research outputs
Top Co-Authors

Avatar

Kyunghyun Sung

University of California

View shared research outputs
Top Co-Authors

Avatar

Stanley Osher

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge