Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stanislav Geidl is active.

Publication


Featured researches published by Stanislav Geidl.


Journal of Chemical Information and Modeling | 2011

Predicting pK(a) values of substituted phenols from atomic charges: comparison of different quantum mechanical methods and charge distribution schemes.

Radka Svobodová Vařeková; Stanislav Geidl; Crina-Maria Ionescu; Ondřej Skřehota; Michal Kudera; David Sehnal; Tomáš Bouchal; Ruben Abagyan; Heinrich J. Huber; Jaroslav Koča

The acid dissociation (ionization) constant pK(a) is one of the fundamental properties of organic molecules. We have evaluated different computational strategies and models to predict the pK(a) values of substituted phenols using partial atomic charges. Partial atomic charges for 124 phenol molecules were calculated using 83 approaches containing seven theory levels (MP2, HF, B3LYP, BLYP, BP86, AM1, and PM3), three basis sets (6-31G*, 6-311G, STO-3G), and five population analyses (MPA, NPA, Hirshfeld, MK, and Löwdin). The correlations between pK(a) and various atomic charge descriptors were examined, and the best descriptors were selected for preparing the quantitative structure-property relationship (QSPR) models. One QSPR model was created for each of the 83 approaches to charge calculation, and then the accuracy of all these models was analyzed and compared. The pK(a)s predicted by most of the models correlate strongly with experimental pK(a) values. For example, more than 25% of the models have correlation coefficients (R²) greater than 0.95 and root-mean-square errors smaller than 0.49. All seven examined theory levels are applicable for pK(a) prediction from charges. The best results were obtained for the MP2 and HF level of theory. The most suitable basis set was found to be 6-31G*. The 6-311G basis set provided slightly weaker correlations, and unexpectedly also, the STO-3G basis set is applicable for the QSPR modeling of pK(a). The Mulliken, natural, and Löwdin population analyses provide accurate models for all tested theory levels and basis sets. The results provided by the Hirshfeld population analysis were also acceptable, but the QSPR models based on MK charges show only weak correlations.


Journal of Chemical Information and Modeling | 2013

Rapid calculation of accurate atomic charges for proteins via the electronegativity equalization method.

Crina-Maria Ionescu; Stanislav Geidl; Radka Svobodová Vařeková; Jaroslav Koča

We focused on the parametrization and evaluation of empirical models for fast and accurate calculation of conformationally dependent atomic charges in proteins. The models were based on the electronegativity equalization method (EEM), and the parametrization procedure was tailored to proteins. We used large protein fragments as reference structures and fitted the EEM model parameters using atomic charges computed by three population analyses (Mulliken, Natural, iterative Hirshfeld), at the Hartree-Fock level with two basis sets (6-31G*, 6-31G**) and in two environments (gas phase, implicit solvation). We parametrized and successfully validated 24 EEM models. When tested on insulin and ubiquitin, all models reproduced quantum mechanics level charges well and were consistent with respect to population analysis and basis set. Specifically, the models showed on average a correlation of 0.961, RMSD 0.097 e, and average absolute error per atom 0.072 e. The EEM models can be used with the freely available EEM implementation EEM_SOLVER.


Nucleic Acids Research | 2015

ValidatorDB: database of up-to-date validation results for ligands and non-standard residues from the Protein Data Bank

David Sehnal; Radka Svobodová Vařeková; Lukáš Pravda; Crina-Maria Ionescu; Stanislav Geidl; Vladimír Horský; Deepti Jaiswal; Michaela Wimmerová; Jaroslav Koča

Following the discovery of serious errors in the structure of biomacromolecules, structure validation has become a key topic of research, especially for ligands and non-standard residues. ValidatorDB (freely available at http://ncbr.muni.cz/ValidatorDB) offers a new step in this direction, in the form of a database of validation results for all ligands and non-standard residues from the Protein Data Bank (all molecules with seven or more heavy atoms). Model molecules from the wwPDB Chemical Component Dictionary are used as reference during validation. ValidatorDB covers the main aspects of validation of annotation, and additionally introduces several useful validation analyses. The most significant is the classification of chirality errors, allowing the user to distinguish between serious issues and minor inconsistencies. Other such analyses are able to report, for example, completely erroneous ligands, alternate conformations or complete identity with the model molecules. All results are systematically classified into categories, and statistical evaluations are performed. In addition to detailed validation reports for each molecule, ValidatorDB provides summaries of the validation results for the entire PDB, for sets of molecules sharing the same annotation (three-letter code) or the same PDB entry, and for user-defined selections of annotations or PDB entries.


Journal of Cheminformatics | 2013

Predicting p K a values from EEM atomic charges

Radka Svobodová Vařeková; Stanislav Geidl; Crina-Maria Ionescu; Ondřej Skřehota; Tomáš Bouchal; David Sehnal; Ruben Abagyan; Jaroslav Koča

AbstractThe acid dissociation constant p Kais a very important molecular property, and there is a strong interest in the development of reliable and fast methods for p Kaprediction. We have evaluated the p Kaprediction capabilities of QSPR models based on empirical atomic charges calculated by the Electronegativity Equalization Method (EEM). Specifically, we collected 18 EEM parameter sets created for 8 different quantum mechanical (QM) charge calculation schemes. Afterwards, we prepared a training set of 74 substituted phenols. Additionally, for each molecule we generated its dissociated form by removing the phenolic hydrogen. For all the molecules in the training set, we then calculated EEM charges using the 18 parameter sets, and the QM charges using the 8 above mentioned charge calculation schemes. For each type of QM and EEM charges, we created one QSPR model employing charges from the non-dissociated molecules (three descriptor QSPR models), and one QSPR model based on charges from both dissociated and non-dissociated molecules (QSPR models with five descriptors). Afterwards, we calculated the quality criteria and evaluated all the QSPR models obtained. We found that QSPR models employing the EEM charges proved as a good approach for the prediction of p Ka(63% of these models had R2 > 0.9, while the best had R2 = 0.924). As expected, QM QSPR models provided more accurate p Kapredictions than the EEM QSPR models but the differences were not significant. Furthermore, a big advantage of the EEM QSPR models is that their descriptors (i.e., EEM atomic charges) can be calculated markedly faster than the QM charge descriptors. Moreover, we found that the EEM QSPR models are not so strongly influenced by the selection of the charge calculation approach as the QM QSPR models. The robustness of the EEM QSPR models was subsequently confirmed by cross-validation. The applicability of EEM QSPR models for other chemical classes was illustrated by a case study focused on carboxylic acids. In summary, EEM QSPR models constitute a fast and accurate p Kaprediction approach that can be used in virtual screening.


Journal of Cheminformatics | 2015

AtomicChargeCalculator: interactive web-based calculation of atomic charges in large biomolecular complexes and drug-like molecules

Crina-Maria Ionescu; David Sehnal; Francesco Luca Falginella; Purbaj Pant; Lukáš Pravda; Tomáš Bouchal; Radka Svobodová Vařeková; Stanislav Geidl; Jaroslav Koča

AbstractBackgroundPartial atomic charges are a well-established concept, useful in understanding and modeling the chemical behavior of molecules, from simple compounds, to large biomolecular complexes with many reactive sites.Results This paper introduces AtomicChargeCalculator (ACC), a web-based application for the calculation and analysis of atomic charges which respond to changes in molecular conformation and chemical environment. ACC relies on an empirical method to rapidly compute atomic charges with accuracy comparable to quantum mechanical approaches. Due to its efficient implementation, ACC can handle any type of molecular system, regardless of size and chemical complexity, from drug-like molecules to biomacromolecular complexes with hundreds of thousands of atoms. ACC writes out atomic charges into common molecular structure files, and offers interactive facilities for statistical analysis and comparison of the results, in both tabular and graphical form.ConclusionsDue to high customizability and speed, easy streamlining and the unified platform for calculation and analysis, ACC caters to all fields of life sciences, from drug design to nanocarriers. ACC is freely available via the Internet at http://ncbr.muni.cz/ACC.


Journal of Chemical Information and Modeling | 2012

SiteBinder: An Improved Approach for Comparing Multiple Protein Structural Motifs

David Sehnal; Radka Svobodová Vařeková; Heinrich J. Huber; Stanislav Geidl; Crina-Maria Ionescu; Michaela Wimmerová; Jaroslav Koča

There is a paramount need to develop new techniques and tools that will extract as much information as possible from the ever growing repository of protein 3D structures. We report here on the development of a software tool for the multiple superimposition of large sets of protein structural motifs. Our superimposition methodology performs a systematic search for the atom pairing that provides the best fit. During this search, the RMSD values for all chemically relevant pairings are calculated by quaternion algebra. The number of evaluated pairings is markedly decreased by using PDB annotations for atoms. This approach guarantees that the best fit will be found and can be applied even when sequence similarity is low or does not exist at all. We have implemented this methodology in the Web application SiteBinder, which is able to process up to thousands of protein structural motifs in a very short time, and which provides an intuitive and user-friendly interface. Our benchmarking analysis has shown the robustness, efficiency, and versatility of our methodology and its implementation by the successful superimposition of 1000 experimentally determined structures for each of 32 eukaryotic linear motifs. We also demonstrate the applicability of SiteBinder using three case studies. We first compared the structures of 61 PA-IIL sugar binding sites containing nine different sugars, and we found that the sugar binding sites of PA-IIL and its mutants have a conserved structure despite their binding different sugars. We then superimposed over 300 zinc finger central motifs and revealed that the molecular structure in the vicinity of the Zn atom is highly conserved. Finally, we superimposed 12 BH3 domains from pro-apoptotic proteins. Our findings come to support the hypothesis that there is a structural basis for the functional segregation of BH3-only proteins into activators and enablers.


Journal of Chemical Information and Modeling | 2015

How Does the Methodology of 3D Structure Preparation Influence the Quality of pKa Prediction

Stanislav Geidl; Radka Svobodová Vařeková; Veronika Bendová; Lukáš Petrusek; Crina-Maria Ionescu; Zdeněk Jurka; Ruben Abagyan; Jaroslav Koča

The acid dissociation constant is an important molecular property, and it can be successfully predicted by Quantitative Structure-Property Relationship (QSPR) models, even for in silico designed molecules. We analyzed how the methodology of in silico 3D structure preparation influences the quality of QSPR models. Specifically, we evaluated and compared QSPR models based on six different 3D structure sources (DTP NCI, Pubchem, Balloon, Frog2, OpenBabel, and RDKit) combined with four different types of optimization. These analyses were performed for three classes of molecules (phenols, carboxylic acids, anilines), and the QSPR model descriptors were quantum mechanical (QM) and empirical partial atomic charges. Specifically, we developed 516 QSPR models and afterward systematically analyzed the influence of the 3D structure source and other factors on their quality. Our results confirmed that QSPR models based on partial atomic charges are able to predict pKa with high accuracy. We also confirmed that ab initio and semiempirical QM charges provide very accurate QSPR models and using empirical charges based on electronegativity equalization is also acceptable, as well as advantageous, because their calculation is very fast. On the other hand, Gasteiger-Marsili empirical charges are not applicable for pKa prediction. We later found that QSPR models for some classes of molecules (carboxylic acids) are less accurate. In this context, we compared the influence of different 3D structure sources. We found that an appropriate selection of 3D structure source and optimization method is essential for the successful QSPR modeling of pKa. Specifically, the 3D structures from the DTP NCI and Pubchem databases performed the best, as they provided very accurate QSPR models for all the tested molecular classes and charge calculation approaches, and they do not require optimization. Also, Frog2 performed very well. Other 3D structure sources can also be used but are not so robust, and an unfortunate combination of molecular class and charge calculation approach can produce weak QSPR models. Additionally, these 3D structures generally need optimization in order to produce good quality QSPR models.


Nucleic Acids Research | 2014

MotiveValidator: interactive web-based validation of ligand and residue structure in biomolecular complexes

Radka Svobodová Vařeková; Deepti Jaiswal; David Sehnal; Crina-Maria Ionescu; Stanislav Geidl; Lukáš Pravda; Vladimír Horský; Michaela Wimmerová; Jaroslav Koča

Structure validation has become a major issue in the structural biology community, and an essential step is checking the ligand structure. This paper introduces MotiveValidator, a web-based application for the validation of ligands and residues in PDB or PDBx/mmCIF format files provided by the user. Specifically, MotiveValidator is able to evaluate in a straightforward manner whether the ligand or residue being studied has a correct annotation (3-letter code), i.e. if it has the same topology and stereochemistry as the model ligand or residue with this annotation. If not, MotiveValidator explicitly describes the differences. MotiveValidator offers a user-friendly, interactive and platform-independent environment for validating structures obtained by any type of experiment. The results of the validation are presented in both tabular and graphical form, facilitating their interpretation. MotiveValidator can process thousands of ligands or residues in a single validation run that takes no more than a few minutes. MotiveValidator can be used for testing single structures, or the analysis of large sets of ligands or fragments prepared for binding site analysis, docking or virtual screening. MotiveValidator is freely available via the Internet at http://ncbr.muni.cz/MotiveValidator.


Molecules | 2016

The Eighth Central European Conference “Chemistry towards Biology”: Snapshot

András Perczel; Atanas G. Atanasov; Vladimír Sklenář; Jiří Nováček; Veronika Papoušková; Pavel Kadeřávek; Lukáš Žídek; Henryk Kozlowski; Joanna Wątły; Aleksandra Hecel; Paulina Kolkowska; Jaroslav Koča; Radka SvobodováVařeková; Lukáš Pravda; David Sehnal; Vladimír Horský; Stanislav Geidl; Ricardo D. Enriz; Pavel Matějka; Adéla Jeništová; Marcela Dendisová; Alžběta Kokaislová; Volkmar Weissig; Mark Olsen; Aidan Coffey; Jude Ajuebor; Ruth Keary; Marta Sanz-Gaitero; Mark J. van Raaij; Olivia McAuliffe

The Eighth Central European Conference “Chemistry towards Biology” was held in Brno, Czech Republic, on August 28–September 1, 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered “Chemistry towards Biology”, meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.


Journal of Cheminformatics | 2011

QSPR designer – a program to design and evaluate QSPR models. Case study on pKa prediction

Ondřej Skřehota; Radka Svobodová Vařeková; Stanislav Geidl; Michal Kudera; David Sehnal; Crina-Maria Ionescu; Jaroslav Koča

Nowadays, a large amount of experimental and predicted data about the 3D structure of organic molecules and biomolecules is available. Advanced computational methods and high performance computers allow us to obtain large sets of descriptors that can be used to estimate physicochemical properties. It is often of interest to study the correlations between descriptors and properties using multilinear regression and to design, parameterize, and test different QSPR (Quantitative Structure Property Relationship) models. We developed a modular and easily extensible program, called QSPR Designer, which can read or calculate structural properties of atoms and bonds, employ them as QSPR descriptors, and evaluate correlations between the descriptors and the examined physicochemical property of a molecule. Furthermore, the software allows us to effectively design and parameterize QSPR models, calculate physicochemical properties via the models, test the quality of the models, and provide graphs and tables summarizing the results. The performance of the software is demonstrated by a case study on the prediction of pKa. The pKa is of fundamental relevance for chemical, biological and pharmaceutical research, because many important physicochemical properties are pKa dependent. Unfortunately, pKa is also one of the most challenging properties to calculate [1]. Atomic charges have proven very successful descriptors for the prediction of pKa [2]. Charges can be calculated using a variety of methods (HF, MP2, functionals, etc.), population analyses (Mulliken, ESP, NPA, etc.) and basis sets. Consequently, the procedure of charge calculation strongly influences their correlation with pKa [3]. Using the QSPR Designer, we have successfully designed, evaluated, and compared 75 different QSPR models for the prediction of pKa from charges. Our best model predicted the pKa for 143 phenols with a correlation coefficient 0.969, RMSE (root mean square error) 0.416 and the average pKa error 0.329.

Collaboration


Dive into the Stanislav Geidl's collaboration.

Top Co-Authors

Avatar

Jaroslav Koča

Central European Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Crina-Maria Ionescu

Central European Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomáš Bouchal

Central European Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaroslav Koča

Central European Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michal Kudera

Central European Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge