Stanislav O. Yurchenko
Bauman Moscow State Technical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stanislav O. Yurchenko.
Journal of Applied Physics | 2012
Dmitry Svintsov; V. Vyurkov; Stanislav O. Yurchenko; Taiichi Otsuji; Victor Ryzhii
We propose a hydrodynamic model describing steady-state and dynamic electron and hole transport properties of graphene structures which accounts for the features of the electron and hole spectra. It is intended for electron-hole plasma in graphene characterized by high rate of inter-carrier scattering compared to external scattering (on phonons and impurities), i.e., for intrinsic or optically pumped (bipolar plasma), and gated graphene (virtually monopolar plasma). We demonstrate that the effect of strong interaction of electrons and holes on their transport can be treated as a viscous friction between the electron and hole components. We apply the developed model for the calculations of the graphene dc conductivity; in particular, the effect of mutual drag of electrons and holes is described. The spectra and damping of collective excitations in graphene in the bipolar and monopolar limits are found. It is shown that at high gate voltages and, hence, at high electron and low hole densities (or vice-versa...
Journal of Applied Physics | 2012
Victor Ryzhii; Taiichi Otsuji; Maxim Ryzhii; V. G. Leiman; Stanislav O. Yurchenko; Vladimir Mitin; M. S. Shur
We analyze the dynamic operation of an optical modulator based on double graphene-layer (GL) structure utilizing the variation of the GL absorption due to the electrically controlled Pauli blocking effect. The developed device model yields the dependences of the modulation depth on the control voltage and the modulation frequency. The excitation of plasma oscillations in double-GL structure can result in the resonant increase of the modulation depth, when the modulation frequency approaches the plasma frequency, which corresponds to the terahertz frequency for the typical parameter values.
Journal of Biological Physics | 2012
N. F. Bunkin; Stanislav O. Yurchenko; Nikolai V. Suyazov; A. V. Shkirin
A qualitative model of the nucleation of stable bubbles in water at room temperature is suggested. This model is completely based on the property of the affinity of water at the nanometer scale; it is shown that under certain conditions the extent of disorder in a liquid starts growing, which results in a spontaneous decrease of the local density of the liquid and in the formation of nanometer-sized voids. These voids can serve as nuclei for the following generation of the so-called bubstons (the abbreviation for bubbles, stabilized by ions). The model of charging the bubstons by the ions, which are capable of adsorption, and the screening by a cloud of counter-ions, which are incapable of adsorption, is analyzed. It was shown that, subject to the charge of bubston, two regimes of such screening can be realized. At low charge of bubston the screening is described in the framework of the known linearized Debye–Huckel approach, when the sign of the counter-ion cloud preserves its sign everywhere in the liquid surrounding the bubston, whereas at large charge this sign is changed at some distance from the bubston surface. This effect provides the mechanism of the emergence of two types of compound particles having the opposite polarity, which leads to the aggregation of such compound particles by a ballistic kinetics.
Applied Physics Letters | 2015
Kirill I. Zaytsev; Konstantin G Kudrin; Valeriy E. Karasik; Igor V. Reshetov; Stanislav O. Yurchenko
In vivo terahertz (THz) spectroscopy of pigmentary skin nevi is performed. The in vivo THz dielectric characteristics of healthy skin and dysplastic and non-dysplastic skin nevi are reconstructed and analyzed. The dielectric permittivity curves of these samples in the THz range exhibit significant differences that could allow non-invasive early diagnosis of dysplastic nevi, which are melanoma precursors. An approach for differentiating dysplastic and non-dysplastic skin nevi using the THz dielectric permittivity is proposed. The results demonstrate that THz pulsed spectroscopy is potentially an effective tool for non-invasive early diagnosis of dysplastic nevi and melanomas of the skin.
IEEE Transactions on Terahertz Science and Technology | 2015
Egor V. Yakovlev; Kirill I. Zaytsev; Irina N. Dolganova; Stanislav O. Yurchenko
Nowadays, composite materials are widely used in building and construction industry, in motor-vehicles, spacecrafts and aircrafts, and in biomedical science due to the ability of combining various consistent components for manufacturing composite materials with physical and chemical properties significantly different from the properties of each component. Polymer composite materials (PCMs) appear to be the most common type of composites. PCMs consist mainly of polymer binder reinforced with the glass-fiber-fabric. Although PCMs are widely applied, PCM manufacturing technology lacks the methods of non- destructive testing. In this paper we demonstrate that terahertz (THz) pulsed spectroscopy (TPS) appears to be a unique instrument for solving important problems of PCM manufacturing control. We experimentally demonstrate the efficiency of TPS for non-destructive control of PCM binder polymerization, since THz radiation is sensitive to changes of picosecond dynamics in media. Furthermore, we show the ability to detect the internal non-impregnated voids inside the PCM structure by means of THz time-of-flight tomography. These results highlight the potentials of TPS applications for non-destructive control of PCM manufacturing process.
Journal of Physics D | 2013
Victor Ryzhii; Taiichi Otsuji; Maxim Ryzhii; N. Ryabova; Stanislav O. Yurchenko; Vladimir Mitin; M. S. Shur
We propose the concept of a terahertz (THz) uncooled bolometer based on n-type and p-type graphene layers (GLs), constituting the absorbing regions, connected by an array of undoped graphene nanoribbons (GNRs). The GLs absorb the THz radiation with the GNR array playing the role of the barrier region (resulting in nGL-GNR-pGL bolometer). The absorption of the incident THz radiation in the GL n- and p- regions leads to variations of the effective temperature of electrons and holes and of their Fermi energy resulting in the variation of the current through the GNRs. Using the proposed device model, we calculate the dark current and the bolometer responsivity as functions of the GNR energy gap, applied voltage and the THz frequency. We demonstrate that the proposed bolometer can surpass the hot-electron bolometers using traditional semiconductor heterostructures. (Some figures may appear in colour only in the online journal)
Journal of Chemical Physics | 2015
Sergey A. Khrapak; Nikita P. Kryuchkov; Stanislav O. Yurchenko; H. M. Thomas
Simple practical approach to estimate thermodynamic properties of strongly coupled Yukawa systems, in both fluid and solid phases, is presented. The accuracy of the approach is tested by extensive comparison with direct computer simulation results (for fluids and solids) and the recently proposed shortest-graph method (for solids). Possible applications to other systems of softly repulsive particles are briefly discussed.
Journal of Applied Physics | 2014
Kirill I. Zaytsev; Arseniy A. Gavdush; Valeriy E. Karasik; Valentin I Alekhnovich; Pavel A. Nosov; Vladimir A. Lazarev; Igor V. Reshetov; Stanislav O. Yurchenko
New experimental and theoretical results for the material parameter reconstruction using terahertz (THz) pulsed spectroscopy (TPS) are presented. The material parameter reconstruction algorithm was realized and experimentally implemented to study the test sample. In order to both verify the algorithm and to estimate the reconstruction accuracy, test sample material parameters obtained with the TPS were compared with the results of the same sample studying by the use of the backward-wave oscillator (BWO) spectroscopy. Thus, high reconstruction accuracy was demonstrated for the spectral range, corresponding to the BWO sensitivity and located between 0.2 and 1.2 THz. The numerical simulations were applied for determining the material parameter reconstruction stability in the presence of white Gaussian noise in TPS waveforms as well as fluctuations in the femtosecond (FS) optical pulse duration. We report a strong dependence of the inverse problem solution stability on these factors. We found that the instabi...
Journal of Applied Physics | 2014
Kirill I. Zaytsev; Gleb M. Katyba; Egor V. Yakovlev; V. S. Gorelik; Stanislav O. Yurchenko
A novel approach for the enhancement of nonlinear optical effects inside globular photonic crystals (PCs) is proposed and systematically studied via numerical simulations. The enhanced optical harmonic generation is associated with two- and three-dimensional PC pumping with the wavelength corresponding to different PC band-gaps. The interactions between light and the PC are numerically simulated using the finite-difference time-domain technique for solving the Maxwells equations. Both empty and infiltrated two-dimensional PC structures are considered. A significant enhancement of harmonic generation is predicted owing to the highly efficient PC pumping based on the structural light focusing effect inside the PC structure. It is shown that a highly efficient harmonic generation could be attained for both the empty and infiltrated two- and three-dimensional PCs. We are demonstrating the ability for two times enhancement of the parametric decay efficiency, one order enhancement of the second harmonic genera...
IEEE Transactions on Terahertz Science and Technology | 2016
Kirill I. Zaytsev; Gleb M. Katyba; Vladimir N. Kurlov; Irina A. Shikunova; Valeriy E. Karasik; Stanislav O. Yurchenko
In this paper, an ability for highly efficient terahertz (THz) waveguiding in multichannel sapphire shaped crystals is demonstrated. The edge-defined film-fed growth (EFG) technique (or Stepanov technique) of shaped crystal growth has been implemented to manufacture the THz photonic crystalline (PC) waveguide. The PC waveguide has been characterized using both numerical simulations and experimental study. It allows guiding the THz waves in multimode regime with the minimal dispersion in frequency range of 1.0-1.55 THz and the minimal power extinction coefficient of 0.02 dB/cm at 1.45 THz. The mode interference phenomenon has been observed in this waveguide highlighting the prospectives of its use for intrawaveguide interferometry. These results demonstrate the capabilities of combining the EFG/Stepanov technique advantages with unique properties of sapphire, such as relatively low THz-wave absorption, high mechanical, thermal, chemical, and radiation strength, for manufacturing the THz waveguides characterized with low loss and dispersion and suitable for use in wide range of THz technology applications in biomedical and material sciences, including sensing in aggressive environment.