Stanislav Sokolov
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stanislav Sokolov.
Nature | 2007
Stanislav Sokolov; Todd Scheuer; William A. Catterall
Ion channelopathies are inherited diseases in which alterations in control of ion conductance through the central pore of ion channels impair cell function, leading to periodic paralysis, cardiac arrhythmia, renal failure, epilepsy, migraine and ataxia. Here we show that, in contrast with this well-established paradigm, three mutations in gating-charge-carrying arginine residues in an S4 segment that cause hypokalaemic periodic paralysis induce a hyperpolarization-activated cationic leak through the voltage sensor of the skeletal muscle NaV1.4 channel. This ‘gating pore current’ is active at the resting membrane potential and closed by depolarizations that activate the voltage sensor. It has similar permeability to Na+, K+ and Cs+, but the organic monovalent cations tetraethylammonium and N-methyl-d-glucamine are much less permeant. The inorganic divalent cations Ba2+, Ca2+ and Zn2+ are not detectably permeant and block the gating pore at millimolar concentrations. Our results reveal gating pore current in naturally occurring disease mutations of an ion channel and show a clear correlation between mutations that cause gating pore current and hypokalaemic periodic paralysis. This gain-of-function gating pore current would contribute in an important way to the dominantly inherited membrane depolarization, action potential failure, flaccid paralysis and cytopathology that are characteristic of hypokalaemic periodic paralysis. A survey of other ion channelopathies reveals numerous examples of mutations that would be expected to cause gating pore current, raising the possibility of a broader impact of gating pore current in ion channelopathies.
The Journal of Physiology | 2000
Steffen Hering; Stanislav Berjukow; Stanislav Sokolov; Rainer Marksteiner; Regina G. Weiß; Richard L. Kraus; Evgeni N. Timin
Evolution has created a large family of different classes of voltage‐gated Ca2+ channels and a variety of additional splice variants with different inactivation properties. Inactivation controls the amount of Ca2+ entry during an action potential and is, therefore, believed to play an important role in tissue‐specific Ca2+ signalling. Furthermore, mutations in a neuronal Ca2+ channel (Cav2.1) that are associated with the aetiology of neurological disorders such as familial hemiplegic migraine and ataxia cause significant changes in the process of channel inactivation. Ca2+ channels of a given subtype may inactivate by three different conformational changes: a fast and a slow voltage‐dependent inactivation process and in some channel types by an additional Ca2+‐dependent inactivation mechanism. Inactivation kinetics of Ca2+ channels are determined by the intrinsic properties of their pore‐forming α1‐subunits and by interactions with other channel subunits. This review focuses on structural determinants of Ca2+ channel inactivation in different parts of Ca2+ channel α1‐subunits, including pore‐forming transmembrane segments and loops, intracellular domain linkers and the carboxyl terminus. Inactivation is also affected by the interaction of the α1‐subunits with auxiliary β‐subunits and intracellular regulator proteins. The evidence shows that pore‐forming S6 segments and conformational changes in extra‐ (pore loop) and intracellular linkers connected to pore‐forming segments may play a principal role in the modulation of Ca2+ channel inactivation. Structural concepts of Ca2+ channel inactivation are discussed.
Neuron | 2005
Stanislav Sokolov; Todd Scheuer; William A. Catterall
Voltage-gated sodium channels activate in response to depolarization, but it is unknown whether the voltage-sensing arginines in their S4 segments pivot across the lipid bilayer as voltage sensor paddles or move through the protein in a gating pore. Here we report that mutation of pairs of arginine gating charges to glutamine induces cation permeation through a gating pore in domain II of the Na(V)1.2a channel. Mutation of R850 and R853 induces a K(+)-selective inward cationic current in the resting state that is blocked by activation. Remarkably, mutation of R853 and R856 causes an outward cationic current with the opposite gating polarity. These results support a model in which the IIS4 gating charges move through a narrow constriction in a gating pore in the sodium channel protein during gating. Paired substitutions of glutamine allow cation movement through the constriction when appropriately positioned by the gating movements of the S4 segment.
Molecular Pharmacology | 2007
Stanislav Sokolov; Richard L. Kraus; Todd Scheuer; William A. Catterall
ProTx-II, an inhibitory cysteine knot toxin from the tarantula Thrixopelma pruriens, inhibits voltage-gated sodium channels. Using the cut-open oocyte preparation for electrophysiological recording, we show here that ProTx-II impedes movement of the gating charges of the sodium channel voltage sensors and reduces maximum activation of sodium conductance. At a concentration of 1 μM, the toxin inhibits 65.3 ± 4.1% of the sodium conductance and 24.6 ± 6.8% of the gating current of brain Nav1.2a channels, with a specific effect on rapidly moving gating charge. Strong positive prepulses can reverse the inhibitory effect of ProTx-II, indicating voltage-dependent dissociation of the toxin. Voltage-dependent reversal of the ProTx-II effect is more rapid for cardiac Nav1.5 channels, suggesting subtype-specific action of this toxin. Voltage-dependent binding and block of gating current are hallmarks of gating modifier toxins, which act by binding to the extracellular end of the S4 voltage sensors of ion channels. The mutation L833C in the S3-S4 linker in domain II reduces affinity for ProTx-II, and mutation of the outermost two gating-charge-carrying arginine residues in the IIS4 voltage sensor to glutamine abolishes voltage-dependent reversal of toxin action and toxin block of gating current. Our results support a voltage-sensor-trapping model for ProTx-II action in which the bound toxin impedes the normal outward gating movement of the IIS4 transmembrane segment, traps the domain II voltage sensor module in its resting state, and thereby inhibits channel activation.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Stanislav Sokolov; Todd Scheuer; William A. Catterall
Some inherited periodic paralyses are caused by mutations in skeletal muscle NaV1.4 sodium channels that alter channel gating and impair action potential generation. In the case of hypokalemic periodic paralysis, mutations of one of the outermost two gating charges in the S4 voltage sensor in domain II of the NaV1.4 α subunit induce gating pore current, resulting in a leak of sodium or protons through the voltage sensor that causes depolarization, sodium overload, and contractile failure correlated with low serum potassium. Potassium-sensitive normokalemic periodic paralysis (NormoPP) is caused by mutations in the third gating charge in domain II of the NaV1.4 channel. Here, we report that these mutations in rat NaV1.4 (R669Q/G/W) cause gating pore current that is activated by depolarization and therefore is conducted in the activated state of the voltage sensor. In addition, we find that this gating pore current is retained in the slow-inactivated state and is deactivated only at hyperpolarized membrane potentials. Gating pore current through the mutant voltage sensor of slow-inactivated NormoPP channels would cause increased sodium influx at the resting membrane potential and during trains of action potentials, depolarize muscle fibers, and lead to contractile failure and cellular pathology in NormoPP.
The Journal of General Physiology | 2010
Stanislav Sokolov; Todd Scheuer; William A. Catterall
Hypokalemic periodic paralysis and normokalemic periodic paralysis are caused by mutations of the gating charge–carrying arginine residues in skeletal muscle NaV1.4 channels, which induce gating pore current through the mutant voltage sensor domains. Inward sodium currents through the gating pore of mutant R666G are only ∼1% of central pore current, but substitution of guanidine for sodium in the extracellular solution increases their size by 13- ± 2-fold. Ethylguanidine is permeant through the R666G gating pore at physiological membrane potentials but blocks the gating pore at hyperpolarized potentials. Guanidine is also highly permeant through the proton-selective gating pore formed by the mutant R666H. Gating pore current conducted by the R666G mutant is blocked by divalent cations such as Ba2+ and Zn2+ in a voltage-dependent manner. The affinity for voltage-dependent block of gating pore current by Ba2+ and Zn2+ is increased at more negative holding potentials. The apparent dissociation constant (Kd) values for Zn2+ block for test pulses to −160 mV are 650 ± 150 µM, 360 ± 70 µM, and 95.6 ± 11 µM at holding potentials of 0 mV, −80 mV, and −120 mV, respectively. Gating pore current is blocked by trivalent cations, but in a nearly voltage-independent manner, with an apparent Kd for Gd3+ of 238 ± 14 µM at −80 mV. To test whether these periodic paralyses might be treated by blocking gating pore current, we screened several aromatic and aliphatic guanidine derivatives and found that 1-(2,4-xylyl)guanidinium can block gating pore current in the millimolar concentration range without affecting normal NaV1.4 channel function. Together, our results demonstrate unique permeability of guanidine through NaV1.4 gating pores, define voltage-dependent and voltage-independent block by divalent and trivalent cations, respectively, and provide initial support for the concept that guanidine-based gating pore blockers could be therapeutically useful.
Journal of Biological Chemistry | 2009
Roy Kahn; Izhar Karbat; Nitza Ilan; Lior Cohen; Stanislav Sokolov; William A. Catterall; Dalia Gordon; Michael Gurevitz
The scorpion α-toxin Lqh2 (from Leiurus quinquestriatus hebraeus) is active at various mammalian voltage-gated sodium channels (Navs) and is inactive at insect Navs. To resolve the molecular basis of this preference we used the following strategy: 1) Lqh2 was expressed in recombinant form and key residues important for activity at the rat brain channel rNav1.2a were identified by mutagenesis. These residues form a bipartite functional surface made of a conserved “core domain” (residues of the loops connecting the secondary structure elements of the molecule core), and a variable “NC domain” (five-residue turn and the C-tail) as was reported for other scorpion α-toxins. 2) The functional role of the two domains was validated by their stepwise construction on the similar scaffold of the anti-insect toxin LqhαIT. Analysis of the activity of the intermediate constructs highlighted the critical role of Phe15 of the core domain in toxin potency at rNav1.2a, and has suggested that the shape of the NC-domain is important for toxin efficacy. 3) Based on these findings and by comparison with other scorpion α-toxins we were able to eliminate the activity of Lqh2 at rNav1.4 (skeletal muscle), hNav1.5 (cardiac), and rNav1.6 channels, with no hindrance of its activity at Nav1.1–1.3. These results suggest that by employing a similar approach the design of further target-selective sodium channel modifiers is imminent.
The Journal of Physiology | 2000
Stanislav Sokolov; Regina G. Weiß; Evgeni N. Timin; Steffen Hering
1 β‐subunit modulation of slow inactivation of class A calcium (Ca2+) channels was studied with two‐microlectrode voltage clamp after expression of the α1A‐ (BI‐2) together with β1a‐, β2a‐, β3‐ or β4‐subunits in Xenopus oocytes. 2 On‐ and off‐rates of slow inactivation were estimated from the kinetics of recovery from slow inactivation. Ca2+ channels with an α1A/β‐subunit composition inducing the slower rate of fast inactivation displayed the faster rate of slow inactivation. The corresponding order of slow inactivation time constants (τonset) was: α1A/β2a, 33 ± 3 s; α1A/β4, 42 ± 4 s; α1A/β1a, 59 ± 4 s; α1A/β3, 67 ± 5 s (n≥ 7). 3 Recovery of class A Ca2+ channels from slow inactivation was voltage dependent and accelerated at hyperpolarized voltages. At a given holding potential recovery kinetics were not significantly modulated by different β‐subunits. 4 Two mutations in segment IIIS6 (IF1612/1613AA) slowed fast inactivation and accelerated the onset of slow inactivation in the resulting mutant (α1A/IF‐AA/β3) in a similar manner as coexpression of the β2a‐subunit. Recovery from slow inactivation was slightly slowed in the double mutant. 5 Our data suggest that class A Ca2+ channels enter the ‘slow inactivated’ state more willingly from the open than from the ‘fast inactivated’ state. The rate of slow inactivation is, therefore, indirectly modulated by different β‐subunits. 6 Fast and slow inactivation in class A Ca2+ channels appears to represent structurally independent conformational changes. Fast inactivation is not a prerequisite for slow inactivation.
Journal of Biological Chemistry | 2001
Stanislav Berjukow; Rainer Marksteiner; Stanislav Sokolov; Regina G. Weiss; Eva Margreiter; Steffen Hering
Circulation Research | 2001
Stanislav Sokolov; Eugen Timin; Steffen Hering