Stanislav Strekopytov
American Museum of Natural History
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stanislav Strekopytov.
Multiple Sclerosis Journal | 2006
Christopher Exley; Godwin Mamutse; Olga Korchazhkina; Eleanor Pye; Stanislav Strekopytov; Anthony Polwart; Clive Hawkins
Multiple sclerosis (MS) is a chronic, immune-mediated, demyelinating disease of the central nervous system of as yet unknown aetiology. A consensus of opinion has suggested that the disorder is the result of an interplay between environmental factors and susceptibility genes. We have used a battery of analytical techniques to determine if the urinary excretion of i) markers of oxidative damage; ii) iron and iii) the environmental toxin aluminium and its antagonist, silicon, are altered in relapsing remitting (RRMS) and secondary progressive MS (SPMS). Urinary concentrations of oxidative biomarkers, MDA and TBARS, were not found to be useful indicators of inflammatory disease in MS. However, urinary concentrations of another potential marker for inflammation and oxidative stress, iron, were significantly increased in SPMS (P<0.01) and insignificantly increased in RRMS (P>0.05). Urinary concentrations of aluminium were also significantly increased in RRMS (P<0.001) and SPMS (P<0.05) such that the levels of aluminium excretion in the former were similar to those observed in individuals undergoing metal chelation therapy. The excretion of silicon was lower in MS and significantly so in SPMS (P<0.05). Increased excretion of iron in urine supported a role for iron dysmetabolism in MS. Levels of urinary aluminium excretion similar to those seen in aluminium intoxication suggested that aluminium may be a hitherto unrecognized environmental factor associated with the aetiology of MS. If aluminium is involved in MS then an increased dietary intake of its natural antagonist, silicon, might be a therapeutic option.
Environmental Science & Technology | 2012
Farhan R. Khan; Superb K. Misra; Javier García-Alonso; Brian D. Smith; Stanislav Strekopytov; Philip S. Rainbow; Samuel N. Luoma; Eugenia Valsami-Jones
Predicting the environmental impact of engineered nanomaterials (ENMs) is increasingly important owing to the prevalence of emerging nanotechnologies. We derived waterborne uptake and efflux rate constants for the estuarine snail, Peringia ulvae, exposed to dissolved Ag (AgNO(3)) and silver nanoparticles (Ag NPs), using biodynamic modeling. Uptake rates demonstrated that dissolved Ag is twice as bioavailable as Ag in nanoparticle form. Biphasic loss dynamics revealed the faster elimination of Ag from Ag NPs at the start of depuration, but similar slow efflux rate constants. The integration of biodynamic parameters into our model accurately predicted Ag tissue burdens during chronic exposure with 85% of predicted values within a factor of 2 of observed values. Zeta potentials for the Ag NPs were lower in estuarine waters than in waters of less salinity; and uptake rates in P. ulvae were slower than reported for the freshwater snail Lymnaea stagnalis in similar experiments. This suggests aggregation of Ag NPs occurs in estuarine waters and reduces, but does not eliminate, bioavailability of Ag from the Ag NPs. Biodynamic modeling provides an effective methodology to determine bioavailable metal concentrations (originating from metal and metal-oxide nanoparticles) in the environment and may aid future ENM risk assessment.
Journal of Alzheimer's Disease | 2006
Christopher Exley; Olga Korchazhkina; Deborah Job; Stanislav Strekopytov; Anthony Polwart; Peter Crome
There are unexplained links between human exposure to aluminium and the incidence, progression and aetiology of Alzheimers disease. The null hypothesis which underlies any link is that there would be no Alzheimers disease in the effective absence of a body burden of aluminium. To test this the latter would have to be reduced to and retained at a level that was commensurate with an Alzheimers disease-free population. In the absence of recent human interference in the biogeochemical cycle of aluminium the reaction of silicic acid with aluminium has acted as a geochemical control of the biological availability of aluminium. This same mechanism might now be applied to both the removal of aluminium from the body and the reduced entry of aluminium into the body while ensuring that essential metals, such as iron, are unaffected. Based upon the premise that urinary aluminium is the best non-invasive estimate of body burden of aluminium patients with Alzheimers disease were asked to drink 1.5 L of a silicic acid-rich mineral water each day for five days and, by comparison of their urinary excretion of aluminium pre-and post this simple procedure, the influence upon their body burden of aluminium was determined. Drinking the mineral water increased significantly (P<0.001) their urinary excretion of silicic acid (34.3 +/- 15.2 to 55.7 +/- 14.2 micromol/mmol creatinine) and concomitantly reduced significantly P=0.037) their urinary excretion of aluminium (86.0 +/- 24.3 to 62.2 +/- 23.2 nmol/mmol creatinine). The latter was achieved without any significant (P>0.05) influence upon the urinary excretion of iron (20.7 +/- 9.5 to 21.7 +/- 13.8 nmol/mmol creatinine). The reduction in urinary aluminium supported the future longer-term use of silicic acid as non-invasive therapy for reducing the body burden of aluminium in Alzheimers disease.
Journal of Analytical Atomic Spectrometry | 2011
Fiona Larner; Mark Rehkämper; Barry J. Coles; Katharina Kreissig; Dominik J. Weiss; Barry Sampson; Catherine Unsworth; Stanislav Strekopytov
A novel ion exchange chromatography was developed for the separation of Cu from biological samples prior to stable isotope analyses. In contrast to previous methods, the new technique makes use of the different distribution coefficients of Cu(I) and Cu(II) to anion exchange resin and this helps to significantly improve the purity of the Cu separates obtained from biological samples, whilst maintaining crucial quantitative yields. Careful method validation confirmed that the procedure yields sufficiently pure Cu fractions after a single pass through the anion exchange columns, with a recovery of 100 ± 2%. Subsequent isotopic analyses of the Cu by multi-collector inductively coupled plasma mass spectrometry, using admixed Ni for mass bias correction, produced accurate Cu stable isotope data with a reproducibility of ±0.04‰ for pure standard solutions and of ±0.15‰ for samples of biological origin.
Metallomics | 2015
Fiona Larner; Ln Woodley; S Shousha; A Moyes; Emma Humphreys-Williams; Stanislav Strekopytov; Alex N. Halliday; Mark Rehkämper; Rc Coombes
An early diagnostic biomarker for breast cancer is essential to improve outcome. High precision isotopic analysis, originating in Earth sciences, can detect very small shifts in metal pathways. For the first time, the natural intrinsic Zn isotopic compositions of various tissues in breast cancer patients and controls were determined. Breast cancer tumours were found to have a significantly lighter Zn isotopic composition than the blood, serum and healthy breast tissue in both groups. The Zn isotopic lightness in tumours suggests that sulphur rich metallothionein dominates the isotopic selectivity of a breast tissue cell, rather than Zn-specific proteins. This reveals a possible mechanism of Zn delivery to Zn-sequestering vesicles by metallothionein, and is supported by a similar signature observed in the copper isotopic compositions of one breast cancer patient. This change in intrinsic isotopic compositions due to cancer has the potential to provide a novel early biomarker for breast cancer.
Talanta | 2013
Shuofei Dong; Dominik J. Weiss; Stanislav Strekopytov; Katharina Kreissig; Youbin Sun; Alex R. Baker; P. Formenti
Accurate characterization of the stable isotope composition of Cu and Zn in major global mineral dust sources and in aerosols is central to the application of these isotope systems to the studies of global geochemical processes and cycles. We test here for the first time Cu and Zn isotope ratios within a well-defined source-receptor setting on the continent-ocean interface and determine the isotope composition of (i) bulk surface soil dust samples from the Sahel region, (ii) individual size fractions of surface dust samples from the Taklimakan Desert, and (iii) aerosols collected in the equatorial eastern North Atlantic region. This is achieved reducing the blank contribution during the ion exchange step using small resin and acid volumes and using a second ion exchange passage to purify the Cu fraction. We find no significant correlation between size fractions and isotope ratios in the two samples analyzed from the Taklimakan Desert. Mass balance calculations suggest that isotope ratios of bulk samples are within the analytical precision of the <4 μm size fraction and can be used to characterize atmospheric long range transport of Cu and Zn in mineral dust from the Taklimakan Desert. The <1 µm size fractions of two aerosol samples collected over the equatorial eastern North Atlantic region have Cu and Zn isotope ratios that are different to Sahel surface soil dust suggesting important non-crustal sources, in line with calculated enrichment factors, and possibly of anthropogenic origin. Using previously reported δ(66)Zn values for anthropogenic emission from Europe, preliminary calculations suggest that up to 55% of Zn arriving at the sampling points in the equatorial eastern North Atlantic region could be of anthropogenic origin.
Nature Communications | 2016
Luke Bridgestock; Tina van de Flierdt; Mark Rehkämper; Maxence Paul; R. Middag; Angela Milne; Maeve C. Lohan; Alex R. Baker; Rosie Chance; Roulin Khondoker; Stanislav Strekopytov; Emma Humphreys-Williams; Eric P. Achterberg; Micha J. A. Rijkenberg; Loes J. A. Gerringa; Hein J.W. de Baar
Anthropogenic emissions completely overwhelmed natural marine lead (Pb) sources during the past century, predominantly due to leaded petrol usage. Here, based on Pb isotope measurements, we reassess the importance of natural and anthropogenic Pb sources to the tropical North Atlantic following the nearly complete global cessation of leaded petrol use. Significant proportions of up to 30–50% of natural Pb, derived from mineral dust, are observed in Atlantic surface waters, reflecting the success of the global effort to reduce anthropogenic Pb emissions. The observation of mineral dust derived Pb in surface waters is governed by the elevated atmospheric mineral dust concentration of the North African dust plume and the dominance of dry deposition for the atmospheric aerosol flux to surface waters. Given these specific regional conditions, emissions from anthropogenic activities will remain the dominant global marine Pb source, even in the absence of leaded petrol combustion.
Analytical Methods | 2011
Jennifer S. Le Blond; Stanislav Strekopytov; Catherine Unsworth; Ben J. Williamson
Biomass is increasingly being used as an alternative energy source to fossil fuels. Of particular concern is that during combustion of biomass rich in silica (SiO2), such as sugarcane and many other grasses, the silica can convert into a crystalline form. Exposure to crystalline silica can potentially cause respiratory disease, such as silicosis. To improve understanding of the potential health risk, a robust and rapid method for quantifying the amount of silicon (Si) in plant material is required. Traditional methods do not usually account for Si in organic materials. This paper, therefore, proposes a new methodology based on a closed vessel microwave digestion using hydrofluoric acid (HF). To test the method, sugarcane leaves were digested and the solutions analysed by inductively coupled plasma atomic emission spectroscopy (ICP-AES), with an HF-resistant setup, and two external calibration standard sets in an HF-H3BO3-matrix and HNO3-matrix. The concentration of Si found in the reference materials was consistent with previously published values and Si loss during the sample preparation was minimal. The elemental recoveries from the reference materials were generally good (85–115% for Al, Ca, Cu, Fe, K, Mg, P, Si, Sr, Ti and 78–125% for K and S). The new methodology can be constructive in building a new database on Si and some other elements in biofuel plant varieties.
Talanta | 2012
Marion Ferrat; Dominik J. Weiss; Stanislav Strekopytov
The geochemical provenancing of atmospheric dust deposited in terrestrial archives such as peat bogs using trace elements is central to the study of atmospheric deposition over the continents and at the heart of many climate and environmental studies. The use of a single digestion method on all sample types involved in such a study (dust archive and sources) minimizes the contribution of the total analytical error when comparing sample compositions and attributing a source to the deposited dust. To date, this factor is limiting progress in geographical areas where the compositional variations between the sources and within the archive are small. Here, seven microwave and hot plate digestion methods were tested on rock, soil and plant reference materials to establish a unique method optimizing precision and accuracy in all sample types. The best results were obtained with a hot plate closed-vessel digestion with 2 ml HF and 0.5 ml HNO(3) for 0.1g of sample, which allowed the precise, accurate and low blank quantification of the trace elements La-Yb, Sc, Y, Th and Pb by ICP-MS. This method was tested in a climate study in central Asia and temporal changes in the dominant dust source were for the first time successfully linked to changes in atmospheric circulation patterns above this region.
Environmental Science & Technology | 2016
R Ochoa Gonzalez; Stanislav Strekopytov; F Amato; Xavier Querol; C Reche; Dominik J. Weiss
This study reports spatial and temporal variability of Zn and Cu isotopes in atmospheric particulate matter (PM) collected in two major European cities with contrasting atmospheric pollution, Barcelona and London. We demonstrate that nontraditional stable isotopes identify source contributions of Zn and Cu and can play a major role in future air quality studies. In Barcelona, samples of fine PM were collected at street level at sites with variable traffic density. The isotopic signatures ranged between -0.13 ± 0.09 and -0.51 ± 0.05‰ for δ(66)ZnIRMM and between +0.04 ± 0.20 and +0.33 ± 0.15‰ for δ(65)CuAE633. Copper isotope signatures similar to those of Cu sulfides and Cu/Sb ratios within the range typically found in brake wear suggest that nonexhaust emissions from vehicles are dominant. Negative Zn isotopic signatures characteristic for gaseous emissions from smelting and combustion and large enrichments of Zn and Cd suggest contribution from metallurgical industries. In London, samples of coarse PM collected on the top of a building over 18 months display isotope signatures ranging between +0.03 ± 0.04 and +0.49 ± 0.02‰ for δ(66)ZnIRMM and between +0.37 ± 0.17 and +0.97 ± 0.21‰ for δ(65)CuAE633. Heavy Cu isotope signatures (up to +0.97 ± 0.21‰) and higher enrichments and Cu/Sb ratios during winter time indicate important contribution from fossil fuel combustion. The positive δ(66)ZnIRMM signatures are in good agreement with signatures characteristic for ore concentrates used for the production of tires and galvanized materials, suggesting nonexhaust emissions from vehicles as the main source of Zn pollution.