Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stanislav V. Sosnovtsev is active.

Publication


Featured researches published by Stanislav V. Sosnovtsev.


PLOS Biology | 2004

Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages

Christiane E. Wobus; Stephanie M. Karst; Larissa B. Thackray; Kyeong-Ok Chang; Stanislav V. Sosnovtsev; Gaël Belliot; Anne Krug; Jason M. Mackenzie; Kim Y. Green; Herbert W. Virgin

Noroviruses are understudied because these important enteric pathogens have not been cultured to date. We found that the norovirus murine norovirus 1 (MNV-1) infects macrophage-like cells in vivo and replicates in cultured primary dendritic cells and macrophages. MNV-1 growth was inhibited by the interferon-αβ receptor and STAT-1, and was associated with extensive rearrangements of intracellular membranes. An amino acid substitution in the capsid protein of serially passaged MNV-1 was associated with virulence attenuation in vivo. This is the first report of replication of a norovirus in cell culture. The capacity of MNV-1 to replicate in a STAT-1-regulated fashion and the unexpected tropism of a norovirus for cells of the hematopoietic lineage provide important insights into norovirus biology.


Journal of Virology | 2009

Evolutionary dynamics of GII.4 noroviruses over a 34-year period.

Karin Bok; Eugenio J. Abente; Mauricio Realpe-Quintero; Tanaji Mitra; Stanislav V. Sosnovtsev; Albert Z. Kapikian; Kim Y. Green

ABSTRACT Noroviruses are a major cause of epidemic gastroenteritis in children and adults, and GII.4 has been the predominant genotype since its first documented occurrence in 1987. This study examined the evolutionary dynamics of GII.4 noroviruses over more than three decades to investigate possible mechanisms by which these viruses have emerged to become predominant. Stool samples (n = 5,424) from children hospitalized at the Childrens Hospital in Washington, DC, between 1974 and 1991 were screened for the presence of noroviruses by a custom multiplex real-time reverse transcription-PCR. The complete genome sequences of five GII.4 noroviruses (three of which predate 1987 by more than a decade) in this archival collection were determined and compared to the sequences of contemporary strains. Evolutionary analysis determined that the GII.4 VP1 capsid gene evolved at a rate of 4.3 × 10−3 nucleotide substitutions/site/year. Only six sites in the VP1 capsid protein were found to evolve under positive selection, most of them located in the shell domain. No unique mutations were observed in or around the two histoblood group antigen (HBGA) binding sites in the P region, indicating that this site has been conserved since the 1970s. The VP1 proteins from the 1974 to 1977 noroviruses contained a unique sequence of four consecutive amino acids in the P2 region, which formed an exposed protrusion on the modeled capsid structure. This protrusion and other observed sequence variations did not affect the HBGA binding profiles of recombinant virus-like particles derived from representative 1974 and 1977 noroviruses compared with more recent noroviruses. Our analysis of archival GII.4 norovirus strains suggests that this genotype has been circulating for more than three decades and provides new ancestral strain sequences for the analysis of GII.4 evolution.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Chimpanzees as an animal model for human norovirus infection and vaccine development

Karin Bok; Gabriel I. Parra; Tanaji Mitra; Eugenio J. Abente; Charlene K. Shaver; Denali Boon; Ronald E. Engle; Claro Yu; Albert Z. Kapikian; Stanislav V. Sosnovtsev; Robert H. Purcell; Kim Y. Green

Noroviruses are global agents of acute gastroenteritis, but the development of control strategies has been hampered by the absence of a robust animal model. Studies in chimpanzees have played a key role in the characterization of several fastidious hepatitis viruses, and we investigated the feasibility of such studies for the noroviruses. Seronegative chimpanzees inoculated i.v. with the human norovirus strain Norwalk virus (NV) did not show clinical signs of gastroenteritis, but the onset and duration of virus shedding in stool and serum antibody responses were similar to that observed in humans. NV RNA was detected in intestinal and liver biopsies concurrent with the detection of viral shedding in stool, and NV antigen expression was observed in cells of the small intestinal lamina propria. Two infected chimpanzees rechallenged 4, 10, or 24 mo later with NV were resistant to reinfection, and the presence of NV-specific serum antibodies correlated with protection. We evaluated the immunogenicity and efficacy of virus-like particles (VLPs) derived from NV (genogroup I, GI) and MD145 (genogroup II, GII) noroviruses as vaccines. Chimpanzees vaccinated intramuscularly with GI VLPs were protected from NV infection when challenged 2 and 18 mo after vaccination, whereas chimpanzees that received GII VLPs vaccine or a placebo were not. This study establishes the chimpanzee as a viable animal model for the study of norovirus replication and immunity, and shows that NV VLP vaccines could induce protective homologous immunity even after extended periods of time.


Journal of Virology | 2003

In Vitro Proteolytic Processing of the MD145 Norovirus ORF1 Nonstructural Polyprotein Yields Stable Precursors and Products Similar to Those Detected in Calicivirus-Infected Cells

Gaël Belliot; Stanislav V. Sosnovtsev; Tanaji Mitra; Carl H. Hammer; Mark Garfield; Kim Y. Green

ABSTRACT The MD145-12 strain (GII/4) is a member of the genus Norovirus in the Caliciviridae and was detected in a patient with acute gastroenteritis in a Maryland nursing home. The open reading frame 1 (ORF1) (encoding the nonstructural polyprotein) was cloned as a consensus sequence into various expression vectors, and a proteolytic cleavage map was determined. The virus-encoded cysteine proteinase mediated at least five cleavages (Q330/G331, Q696/G697, E875/G876, E1008/A1009, and E1189/G1190) in the ORF1 polyprotein in the following order: N-terminal protein; nucleoside triphosphatase; 20-kDa protein (p20); virus protein, genome linked (VPg); proteinase (Pro); polymerase (Pol). A time course analysis of proteolytic processing of the MD145-12 ORF1 polyprotein in an in vitro coupled transcription and translation assay allowed the identification of stable precursors and final mapped cleavage products. Stable precursors included p20VPg (analogous to the 3AB of the picornaviruses) and ProPol (analogous to the 3CD of the picornaviruses). Less stable processing intermediates were identified as p20VPgProPol, p20VPgPro, and VPgPro. The MD145-12 Pro and ProPol proteins were expressed in bacteria as active forms of the proteinase and used to further characterize their substrate specificities in trans cleavage assays. The MD145-12 Pro was able to cleave its five mapped cleavage sites in trans and, in addition, could mediate trans cleavage of the Norwalk virus (GI/I) ORF1 polyprotein into a similar proteolytic processing profile. Taken together, our data establish a model for proteolytic processing in the noroviruses that is consistent with nonstructural precursors and products identified in studies of caliciviruses that replicate in cell culture systems.


Cell Host & Microbe | 2012

Nondegradative Role of Atg5-Atg12/ Atg16L1 Autophagy Protein Complex in Antiviral Activity of Interferon Gamma

Seungmin Hwang; Nicole S. Maloney; Monique W. Bruinsma; Gautam Goel; Erning Duan; Lei Zhang; Bimmi Shrestha; Michael S. Diamond; Adish Dani; Stanislav V. Sosnovtsev; Kim Y. Green; Carlos López-Otín; Ramnik J. Xavier; Larissa B. Thackray; Herbert W. Virgin

Summary Host resistance to viral infection requires type I (α/β) and II (γ) interferon (IFN) production. Another important defense mechanism is the degradative activity of macroautophagy (herein autophagy), mediated by the coordinated action of evolutionarily conserved autophagy proteins (Atg). We show that the Atg5-Atg12/Atg16L1 protein complex, whose prior known function is in autophagosome formation, is required for IFNγ-mediated host defense against murine norovirus (MNV) infection. Importantly, the direct antiviral activity of IFNγ against MNV in macrophages required Atg5-Atg12, Atg7, and Atg16L1, but not induction of autophagy, the degradative activity of lysosomal proteases, fusion of autophagosomes and lysosomes, or the Atg8-processing protein Atg4B. IFNγ, via Atg5-Atg12/Atg16L1, inhibited formation of the membranous cytoplasmic MNV replication complex, where Atg16L1 localized. Thus, the Atg5-Atg12/Atg16L1 complex performs a pivotal, nondegradative role in IFNγ-mediated antiviral defense, establishing that multicellular organisms have evolved to use portions of the autophagy pathway machinery in a cassette-like fashion for host defense.


Journal of Virology | 2002

Processing Map and Essential Cleavage Sites of the Nonstructural Polyprotein Encoded by ORF1 of the Feline Calicivirus Genome

Stanislav V. Sosnovtsev; Mark Garfield; Kim Y. Green

ABSTRACT Feline calicivirus (FCV) nonstructural proteins are translated as part of a large polyprotein that undergoes autocatalytic processing by the virus-encoded 3C-like proteinase. In this study, we mapped three new cleavage sites (E46/A47, E331/D332, and E685/N686) recognized by the virus proteinase in the N-terminal part of the open reading frame 1 (ORF1) polyprotein to complete the processing map. Taken together with two sites we identified previously (E960/A961 and E1071/S1072), the FCV ORF1 polyprotein contains five cleavage sites that define the borders of six proteins with calculated molecular masses of 5.6, 32, 38.9, 30.1, 12.7, and 75.7 kDa, which we designated p5.6, p32, p39 (NTPase), p30, p13 (VPg), and p76 (Pro-Pol), respectively. Mutagenesis of the E to A in each of these cleavage sites in an infectious FCV cDNA clone was lethal for the virus, indicating that these cleavages are essential in a productive virus infection. Mutagenesis of two cleavage sites (E1345/T1346 and E1419/G1420) within the 75.7-kDa Pro-Pol protein previously mapped in bacterial expression studies was not lethal.


Journal of Virology | 2004

Calicivirus 3C-Like Proteinase Inhibits Cellular Translation by Cleavage of Poly(A)-Binding Protein

Muge N. Kuyumcu-Martinez; Gaël Belliot; Stanislav V. Sosnovtsev; Kyeong-Ok Chang; Kim Y. Green; Richard E. Lloyd

ABSTRACT Caliciviruses are single-stranded RNA viruses that cause a wide range of diseases in both humans and animals, but little is known about the regulation of cellular translation during infection. We used two distinct calicivirus strains, MD145-12 (genus Norovirus) and feline calicivirus (FCV) (genus Vesivirus), to investigate potential strategies used by the caliciviruses to inhibit cellular translation. Recombinant 3C-like proteinases (r3CLpro) from norovirus and FCV were found to cleave poly(A)-binding protein (PABP) in the absence of other viral proteins. The norovirus r3CLpro PABP cleavage products were indistinguishable from those generated by poliovirus (PV) 3Cpro cleavage, while the FCV r3CLpro products differed due to cleavage at an alternate cleavage site 24 amino acids downstream of one of the PV 3Cpro cleavage sites. All cleavages by calicivirus or PV proteases separated the C-terminal domain of PABP that binds translation factors eIF4B and eRF3 from the N-terminal RNA-binding domain of PABP. The effect of PABP cleavage by the norovirus r3CLpro was analyzed in HeLa cell translation extracts, and the presence of r3CLpro inhibited translation of both endogenous and exogenous mRNAs. Translation inhibition was poly(A) dependent, and replenishment of the extracts with PABP restored translation. Analysis of FCV-infected feline kidney cells showed that the levels of de novo cellular protein synthesis decreased over time as virus-specific proteins accumulated, and cleavage of PABP occurred in virus-infected cells. Our data indicate that the calicivirus 3CLpro, like PV 3Cpro, mediates the cleavage of PABP as part of its strategy to inhibit cellular translation. PABP cleavage may be a common mechanism among certain virus families to manipulate cellular translation.


Journal of Virology | 2009

Mouse Norovirus Replication Is Associated with Virus-Induced Vesicle Clusters Originating from Membranes Derived from the Secretory Pathway

Jennifer L. Hyde; Stanislav V. Sosnovtsev; Kim Y. Green; Christiane E. Wobus; Herbert W. Virgin; Jason M. Mackenzie

ABSTRACT Human noroviruses (family Caliciviridae) are the leading cause of nonbacterial gastroenteritis worldwide. Despite the prevalence of these viruses within the community, the study of human norovirus has largely been hindered due to the inability to cultivate the viruses ex vivo and the lack of a small-animal model. In 2003, the discovery of a novel murine norovirus (MNV-1) and the identification of the tropism of MNV-1 for cells of a mononuclear origin led to the establishment of the first norovirus tissue culture system. Like other positive-sense RNA viruses, MNV-1 replication is associated with host membranes, which undergo significant rearrangement during infection. We characterize here the subcellular localization of the MNV-1 open reading frame 1 proteins and viral double-stranded RNA (dsRNA). Over the course of infection, dsRNA and the MNV-1 RNA-dependent RNA polymerase (NS7) were observed to proliferate from punctate foci located in the perinuclear region. All of the MNV-1 open reading frame 1 proteins were observed to colocalize with dsRNA during the course of infection. The MNV-1 replication complex was immunolocalized to virus-induced vesicle clusters formed in the cytoplasm of infected cells. Both dsRNA and MNV-1 NS7 were observed to localize to the limiting membrane of the individual clusters by cryo-immunoelectron microscopy. We show that the MNV-1 replication complex initially associates with membranes derived from the endoplasmic reticulum, trans-Golgi apparatus, and endosomes. In addition, we show that MNV-1 replication is insensitive to the fungal metabolite brefeldin A and consistently does not appear to recruit coatomer protein complex I (COPI) or COPII component proteins during replication. These data provide preliminary insights into key aspects of replication of MNV-1, which will potentially further our understanding of the pathogenesis of noroviruses and aid in the identification of potential targets for drug development.


Journal of Virology | 2005

Feline Calicivirus VP2 Is Essential for the Production of Infectious Virions

Stanislav V. Sosnovtsev; Gaël Belliot; Kyeong-Ok Chang; Oge Onwudiwe; Kim Y. Green

ABSTRACT The third open reading frame (ORF3) located at the 3′ end of the genomic RNA of feline calicivirus (FCV) encodes a small (12.2-kDa) minor structural protein of 106 amino acids designated VP2. Point mutations and deletions were introduced into an infectious FCV cDNA clone in order to evaluate the functional importance of ORF3 and its encoded protein, VP2. Deletion of the entire ORF3 sequence was lethal for the virus, and evidence was found for strong selective pressure to produce the VP2 protein. Extended deletions in the 5′ end and small deletions in the 3′ end of ORF3, as well as the introduction of stop codons into the ORF3 sequence, were tolerated by the viral replication machinery, but infectious virus could not be recovered. Infectious virus particles could be rescued from a full-length FCV cDNA clone encoding a nonfunctional VP2 when VP2 was provided in trans from a eukaryotic expression plasmid. Our data indicate that VP2, a protein apparently unique to the caliciviruses, is essential for productive replication that results in the synthesis and maturation of infectious virions and that the ORF3 nucleotide sequence itself overlaps a cis-acting RNA signal at the genomic 3′ end.


Toxicologic Pathology | 2006

Pathology of Immunodeficient Mice With Naturally Occurring Murine Norovirus Infection

Jerrold M. Ward; Christiane E. Wobus; Larissa B. Thackray; Cindy R. Erexson; Larry J. Faucette; Gaël Belliot; Elyssa L. Barron; Stanislav V. Sosnovtsev; Kim Y. Green

Murine norovirus (MNV) was recently discovered in Rag2 −/−/Stat1 −/− mice in a U.S. medical research facility. Presently, little is known concerning the epidemiology and natural history of this virus. We studied the pathology of naturally occurring MNV infection in 28 immunodeficient mice of several different genotypes (Rag1 −/−/IFNγ R−/−, OT1 Rag1 −/−/IFNγ R−/−, OT2 Rag1 −/−/IFNγ R−/−, Rag1 −/−/Stat1 −/−, and Rag2 −/−) that were maintained in two U.S. research facilities. The mice were selected for study because sentinel mice housed in their holding rooms had been identified as positive for MNV-specific antibodies during routine screening for infectious agents. Our data indicate that in certain lines of immunodeficient mice, MNV can establish a disseminated infection that is characteristically associated with inflammation in multiple tissues, including liver (hepatitis), lung (focal interstitial pneumonia) and the peritoneal and pleural cavities. In addition, MNV can establish an asymptomatic infection in the mesenteric lymph nodes of Rag2 −/− mice. Further studies are needed to determine whether MNV presents a confounding variable in immunological, toxicological and pathological studies in mice naturally infected with MNV. [The supplemental data referenced in this paper is not printed in this issue of Toxicologic Pathology. It is available as a downloadable file in the online edition of Toxicologic Pathology, 34(6). In order to access the full article online, you must have either an individual subscription or a member subscription accessed through www.toxpath.org.]

Collaboration


Dive into the Stanislav V. Sosnovtsev's collaboration.

Top Co-Authors

Avatar

Kim Y. Green

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Karin Bok

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gaël Belliot

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Carlos Sandoval-Jaime

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Eugenio J. Abente

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tanaji Mitra

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisbeth Kim Green

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge