Stanisław Kwapień
University of Warsaw
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stanisław Kwapień.
Archive | 1992
Stanisław Kwapień; Wojbor A. Woyczyński
0 Preliminaries.- 0.1 Topology and measures.- 0.2 Tail inequalities.- 0.3 Filtrations and stopping times.- 0.4 Extensions of probability spaces.- 0.5 Bernoulli and canonical Gaussian and ?-stable sequences.- 0.6 Gaussian measures on linear spaces.- 0.7 Modulars on linear spaces.- 0.8 Musielak-Orlicz spaces.- 0.9 Random Musielak-Orlicz spaces.- 0.10 Complements and comments.- Bibliographical notes.- I Random Series.- 1 Basic Inequalities for Random Linear Forms in Independent Random Variables.- 1.1 Levy-Octaviani inequalities.- 1.2 Contraction inequalities.- 1.3 Moment inequalities.- 1.4 Complements and comments.- Best constants in the Levy-Octaviani inequality.- A contraction inequality for mixtures of Gaussian random variables.- Tail inequalities for Bernoulli and Gaussian random linear forms.- A refinement of the moment inequality.- Comparison of moments.- Bibliographical notes.- 2 Convergence of Series of Independent Random Variables.- 2.1 The Ito-Nisio Theorem.- 2.2 Convergence in the p-th mean.- 2.3 Exponential and other moments of random series.- 2.4 Random series in function spaces.- 2.5 An example: construction of the Brownian motion.- 2.6 Karhunen-Loeve representation of Gaussian measures.- 2.7 Complements and comments.- Rosenthals inequalities.- Strong exponential moments of Gaussian series.- Lattice function spaces.- Convergence of Gaussian series.- Bibliographical notes.- 3 Domination Principles and Comparison of Sums of Independent Random Variables.- 3.1 Weak domination.- 3.2 Strong domination.- 3.3 Hypercontractive domination.- 3.4 Hypercontractivity of Bernoulli and Gaussian series.- 3.5 Sharp estimates of growth of p-th moments.- 3.6 Complements and comments.- More on C-domination.- Superstrong domination.- Domination of character systems on compact Abelian groups.- Random matrices.- Hypercontractivity of real random variables.- More precise estimates on strong exponential moments of Gaussian series.- Growth of p-th moments revisited.- More on strong exponential moments of series of bounded variables.- Bibliographical notes.- 4 Martingales.- 4.1 Doobs inequalities.- 4.2 Convergence of martingales.- 4.3 Tangent and decoupled sequences.- 4.4 Complements and comments.- Bibliographical notes.- 5 Domination Principles for Martingales.- 5.1 Weak domination.- 5.2 Strong domination.- 5.3 Burkholders method: comparison of subordinated martingales.- 5.4 Comparison of strongly dominated martingales.- 5.5 Gaussian martingales.- 5.6 Classic martingale inequalities.- 5.7 Comparison of the a.s convergence of series of tangent sequences.- 5.8 Complements and comments.- Tangency and ergodic theorems.- Burkholders method for conditionally Gaussian and conditionally independent martingales.- Necessity of moderate growth of ?.- Comparison of Gaussian martingales revisited.- Comparing H-valued martingales with 2-D martingales.- The principle of conditioning in limit theorems.- Bibliographical notes.- 6 Random Multilinear Forms in Independent Random Variables and Polynomial Chaos.- 6.1 Basic definitions and properties.- 6.2 Maximal inequalities.- 6.3 Contraction inequalities and domination of polynomial chaos.- 6.4 Decoupling inequalities.- 6.5 Comparison of moments of polynomial chaos.- 6.6 Convergence of polynomial chaos.- 6.7 Quadratic chaos.- 6.8 Wiener chaos and Herrnite polynomials.- 6.9 Complements and comments.- Tail and moment comparisons for chaos and its decoupled chaos.- Necessity of the symmetry condition in decoupling inequalities.- Karhunen-Loeve expansion for the Wiener chaos.- ?-stable chaos of degree d ? 2.- Bibliographical notes.- II Stochastic Integrals.- 7 Integration with Respect to General Stochastic Measures.- 7.1 Construction of the integral.- 7.2 Examples of stochastic measures.- 7.3 Complements and comments.- An alternative definition of m-integrability.- Bibliographical notes.- 8 Deterministic Integrands.- 8.1 Discrete stochastic measure.- 8.2 Processes with independent increments and their characteristics.- 8.3 Integration with respect to a general independently scattered measure.- 8.4 Complements and comments.- Stochastic measures with finite p-th moments.- Bibliographical notes.- 9 Predictable Integrands.- 9.1 Integration with respect to processes with independent increments: Decoupling inequalities approach.- 9.2 Brownian integrals.- 9.3 Characteristics of semimartingales.- 9.4 Semimartingale integrals.- 9.5 Complements and comments.- The Bichteler-Dellacherie Theorem.- Semimartingale integrals in Lp.- ?-stable integrals.- Bibliographical notes.- 10 Multiple Stochastic Integrals.- 10.1 Products of stochastic measures.- 10.2 Structure of double integrals.- 10.3 Wiener polynomial chaos revisited.- 10.4 Complements and comments.- Multiple ?-stable integrals.- Bibliographical notes.- A Unconditional and Bounded Multiplier Convergence of Random Series.- A.2 Almost sure convergence.- A.3 Complements and comments.- A hypercontractive view.- Bibliographical notes.- B Vector Measures.- B.1 Extensions of vector measures.- B.2 Boundedness and control measure of stochastic measures.- B.3 Complements and comments.- Bibliographical notes.
Archive | 1994
Stanisław Kwapień
Ten years ago A. Ehrhard published an important paper, [1], in which he proved that if γn is a gaussian measure on R n, Φ is the normal distribution function, i.e \(\Phi (t)=\frac{1}{\sqrt{2\pi}}\int _{-\infty}^{t}e^{s^2/2}ds\) for t ∈ R 1 then
Annals of Probability | 2001
Evarist Giné; Stanisław Kwapień; Rafał Latała; Joel Zinn
Archive | 1994
Pawel Hitczenko; Stanisław Kwapień
\Phi ^{-1}(\gamma _n(\lambda ^1K^1+\lambda ^2K^2))\geq \lambda ^1\Phi ^{-1}(\gamma _n(K^1))+\lambda ^2\Phi ^{-1}(\gamma _n(K^2))
Infinite Dimensional Analysis, Quantum Probability and Related Topics | 2002
Adam Jakubowski; Stanisław Kwapień; Paul Raynaud de Fitte; Jan Rosiński
Archive | 2004
Stanisław Kwapień; Rafał Latała; Krzysztof Oleszkiewicz; Joel Zinn
for each K 1, K 2 convex subsets of R n and λ1,λ2 ≥ 0, λ1 + λ2 = 1.
Archive | 2004
Stanisław Kwapień; Jan Rosiński
Let X; Xi ;i 2 N, be independent identically distributed random variables and let h(x;y)= h(y;x) be a measurable function of two variables. It is shown that the bounded law of the iterated logarithm, lim supn(n log log n) 1 P 1i<jn h(Xi;Xj) <1 a.s., holds if and only if the following three conditions are satised: h is canonical for the law of X (that is, Eh(X;y)=0 for almost all y) and there exists C<1 such that, both, E(h 2 (X1;X2)^u)C log log u for all large u and supfEh(X1;X2)f(X1)g(X2):kf(X)k21;kg(X)k21;kfk1<1;kgk1<1gC.
Georgian Mathematical Journal | 2002
Stanisław Kwapień; V Tarieladze
In this note we give simple proofs of some of the inequalities on Rademacher series given by M. Ledoux and M. Talagrand, [6], ch.4.1, S.J. Montgomery -Smith, [8], and by P. Hitczenko, [3]. We obtain better constants with proofs which can be useful in some other cases. As a corollary we prove a theorem of Kolmogorov on the lower estimates of the tail of sums of symmetric, independent random variables.
PROGRESS IN PROBABILITY | 2003
Stanisław Kwapień; Vaja Tarieladze
It is proved that in Hilbert spaces a single Hilbert–Schmidt operator radonifies cylindrical semimartingales to strong semimartingales. This improves a result due to Badrikian and Ustunel (also L. Schwartz), who needed composition of three Hilbert–Schmidt operators.
Studia Mathematica | 1985
Stanisław Kwapień; Carsten Schütt
We find the cluster set in the Law of the Iterated Logarithm for U-statistics of order 2 in some interesting special cases. The lim sup is an unusual function of the quantities that determine the Bounded LIL.