Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stanislaw Solnik is active.

Publication


Featured researches published by Stanislaw Solnik.


Gait & Posture | 2009

Interaction between age and gait velocity in the amplitude and timing of antagonist muscle coactivation

Tibor Hortobágyi; Stanislaw Solnik; Allison H. Gruber; Patrick Rider; Ken Steinweg; Joseph Helseth; Paul DeVita

Old adults execute single-joint voluntary movements with heightened antagonist muscle coactivation and altered timing between agonist and antagonist muscles. It is less clear if old adults adopt similar strategies during the most common form of activity of daily living, gait, and if age and gait velocity interact. We compared antagonist muscle activation amplitude and onset, offset, and activation duration of the vastus lateralis, biceps femoris, tibialis anterior, and gastrocnemius lateralis from surface EMG in 17 young (age 19-25) and 17 old adults (age 71-85) while walking at 1.2, 1.5, and 1.8m/s. All participants were healthy and highly mobile. The activation level of the four muscles when each acted as the antagonist was, on the average, 83% higher in old vs young adults (for each muscle p<0.05). In two of four muscles this activation increased with gait velocity in young but not in old adults. The inter-burst interval between TA and GL was two-fold (83 ms) longer in young vs old adults and at higher gait velocities it became 14% (24 ms) shorter in young but 51% (31 ms) longer in old adults (interaction, p=0.015). It is concluded that there is an interaction between age and gait velocity in the amplitude and timing of antagonist muscle coactivation.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2011

Association Between Muscle Activation and Metabolic Cost of Walking in Young and Old Adults

Tibor Hortobágyi; Adria Finch; Stanislaw Solnik; Patrick Rider; Paul DeVita

BACKGROUND The net metabolic cost of walking (C(w)) as well as the level of neural activation of agonist and antagonist leg muscles are higher in healthy old compared with young adults. This study examined the association between C(w) and agonist muscle activity and antagonist coactivity in young and old adults. METHODS Young and old adults walked at 0.98 m/s on a treadmill set at 6% decline, level, and 6% incline, while C(w) and neural activation of leg muscles were measured. RESULTS C(w) was 7.0% (incline), 19.2% (level), and 47.3% (decline) higher in old adults (overall 18.3%). Old (67.1%) versus young (40.1%) adults activated their leg muscles 67.3% more during the gait tasks and had 152.8% higher antagonist muscle coactivation (old: 67.1%, young: 19.9%). Agonist muscle activation was unrelated to C(w) on incline, but it explained up to 42% (level), 48% (decline), and 70% (three tasks combined) of variance in C(w). Antagonist coactivation accounted for up to 41% (incline), 45% (level), 59% (decline), 39% (three tasks combined) of variance in C(w). CONCLUSIONS Age-related adaptations in the recruitment pattern of leg muscles during gait significantly contribute to the high C(w) in old adults. Clinical interventions optimizing the neural control of leg muscles during gait could reduce C(w) consequently the relative effort needed for exercise and activities of daily living in old adults.


European Journal of Neuroscience | 2011

Ipsilateral motor cortical responses to TMS during lengthening and shortening of the contralateral wrist flexors

Glyn Howatson; Mathew B. Taylor; Patrick Rider; Binal R. Motawar; Michael P. McNally; Stanislaw Solnik; Paul DeVita; Tibor Hortobágyi

Unilateral lengthening contractions provide a greater stimulus for neuromuscular adaptation than shortening contractions in the active and non‐active contralateral homologous muscle, although little is known of the potential mechanism. Here we examined the possibility that corticospinal and spinal excitability vary in a contraction‐specific manner in the relaxed right flexor carpi radialis (FCR) when humans perform unilateral lengthening and shortening contractions of the left wrist flexors at the same absolute force. Corticospinal excitability in the relaxed right FCR increased more during lengthening than shortening at 80% and 100% of maximum voluntary contraction (MVC). Short‐interval intracortical inhibition diminished during shortening contractions, and it became nearly abolished during lengthening. Intracortical facilitation lessened during shortening but increased during lengthening. Interhemispheric inhibition to the ‘non‐active’ motor cortex diminished during shortening, and became nearly abolished during lengthening at 90% MVC. The amplitude of the Hoffman reflex in the relaxed right FCR decreased during and remained depressed for 20 s after lengthening and shortening of the left wrist flexors. We discuss the possibility that instead of the increased afferent input, differences in the descending motor command and activation of brain areas that link function of the motor cortices during muscle lengthening vs. shortening may cause the contraction‐specific modulation of ipsilateral motor cortical output. In conclusion, ipsilateral motor cortex responses to transcranial magnetic stimulation are contraction‐specific; unilateral lengthening and shortening contractions reduced contralateral spinal excitability, but uniquely modulated ipsilateral corticospinal excitability and the networks involved in intracortical and interhemispheric connections, which may have clinical implications.


Experimental Brain Research | 2014

Unintentional movements produced by back-coupling between the actual and referent body configurations: violations of equifinality in multi-joint positional tasks

Tao Zhou; Stanislaw Solnik; Yen‑Hsun Wu; Mark L. Latash

Abstract We tested several predictions of a recent theory that combines the ideas of control with referent configurations, hierarchical control, and the uncontrolled manifold (UCM) hypothesis. In particular, we tested a hypothesis that unintentional changes in hand coordinate can happen following a long-lasting transient perturbation. The subjects grasped a handle with the right hand, occupied an initial position against a bias force produced by the HapticMaster robot, and then tried not to react to changes in the robot-produced force. Changes in the force were smooth and transient; they always ended with the same force as the bias force. The force-change amplitude and the time the force was kept at the new level (dwell time) varied across conditions. After the transient force change was over, the handle rested in a position that differed significantly from the initial position. The amplitude of this unintentional movement increased with the amplitude of transient force change and with the dwell time. In the new position, the across-trials joint configuration variance was mostly confined to a subspace compatible with the average handle coordinate and orientation (the UCMs for these variables). We view these results as the first experimental support for the hypothesis on back-coupling between the referent and actual body configurations during multi-joint actions. The results suggest that even under the instruction “not to react to transient force changes,” the subjects may be unable to prevent unintentional drift of the referent configuration. The structure of joint configuration variance after such movements was similar to that in earlier reports on joint configuration variance after intentional movements. We conclude that the intentional and unintentional movements are products of a single neural system that can lead to intentional and unintentional shifts of the referent body configuration.


Experimental Brain Research | 2013

End-state comfort and joint configuration variance during reaching

Stanislaw Solnik; Nemanja Pazin; Chase J. Coelho; David A. Rosenbaum; John P. Scholz; Vladimir M. Zatsiorsky; Mark L. Latash

This study joined two approaches to motor control. The first approach comes from cognitive psychology and is based on the idea that goal postures and movements are chosen to satisfy task-specific constraints. The second approach comes from the principle of motor abundance and is based on the idea that control of apparently redundant systems is associated with the creation of multi-element synergies stabilizing important performance variables. The first approach has been tested by relying on psychophysical ratings of comfort. The second approach has been tested by estimating variance along different directions in the space of elemental variables such as joint postures. The two approaches were joined here. Standing subjects performed series of movements in which they brought a hand-held pointer to each of four targets oriented within a frontal plane, close to or far from the body. The subjects were asked to rate the comfort of the final postures, and the variance of their joint configurations during the steady state following pointing was quantified with respect to pointer endpoint position and pointer orientation. The subjects showed consistent patterns of comfort ratings among the targets, and all movements were characterized by multi-joint synergies stabilizing both pointer endpoint position and orientation. Contrary to what was expected, less comfortable postures had higher joint configuration variance than did more comfortable postures without major changes in the synergy indices. Multi-joint synergies stabilized the pointer position and orientation similarly across a range of comfortable/uncomfortable postures. The results are interpreted in terms conducive to the two theoretical frameworks underlying this work, one focusing on comfort ratings reflecting mean postures adopted for different targets and the other focusing on indices of joint configuration variance.


Medicine and Science in Sports and Exercise | 2016

Mirror Training Augments the Cross-education of Strength and Affects Inhibitory Paths

Tjerk Zult; Stuart Goodall; Kevin Thomas; Stanislaw Solnik; Tibor Hortobágyi; Glyn Howatson

PURPOSE Unilateral strength training strengthens not only the muscles on the trained side but also the homologous muscles on the untrained side; however, the magnitude of this interlimb cross-education is modest. We tested the hypothesis that heightened sensory feedback by mirror viewing the exercising hand would augment cross education by modulating neuronal excitability. METHODS Healthy adults were randomized into a mirror training group (MG, N = 11) and a no-mirror training group (NMG, N = 12) and performed 640 shortening muscle contractions of the right wrist flexors at 80% maximum voluntary contraction (MVC) during 15 sessions for 3 wk. Maximal strength and specific transcranial magnetic stimulation metrics of neuronal excitability, measured in the mirror and no-mirror setup at rest and during unilateral contractions at 60% MVC, were assessed before and after the strength intervention. RESULTS Trained wrist flexor MVC increased 72% across groups, whereas cross-education was higher for the MG (61%) than NMG (34%, P = 0.047). The MG showed a reduction (15%-16%) in the contralateral silent period duration measured from the contracting left-untrained flexor carpi radialis, whereas the NMG showed an increase (12%, P ≤ 0.030). Interhemispheric inhibition, measured from the trained to the untrained primary motor cortex, increased in the MG (11%) but decreased in the NMG (15%) when measured in the mirror setup at rest (P = 0.048). Other transcranial magnetic stimulation measures did not change. CONCLUSION Viewing the exercising hand in a mirror can augment the cross-education effect. The use of a mirror in future studies can potentially accelerate functional recovery from unilateral impairment due to stroke or upper limb fracture.


Experimental Brain Research | 2017

Anticipatory postural adjustments and anticipatory synergy adjustments: preparing to a postural perturbation with predictable and unpredictable direction

Daniele Piscitelli; Ali Falaki; Stanislaw Solnik; Mark L. Latash

We explored two aspects of feed-forward postural control, anticipatory postural adjustments (APAs) and anticipatory synergy adjustments (ASAs) seen prior to self-triggered unloading with known and unknown direction of the perturbation. In particular, we tested two main hypotheses predicting contrasting changes in APAs and ASAs. The first hypothesis predicted no major changes in ASAs. The second hypothesis predicted delayed APAs with predominance of co-contraction patterns when perturbation direction was unknown. Healthy subjects stood on the force plate and held a bar with two loads acting in the forward and backward directions. They pressed a trigger that released one of the loads causing a postural perturbation. In different series, the direction of the perturbation was either known (the same load released in all trials) or unknown (the subjects did not know which of the two loads would be released). Surface electromyograms were recorded and used to quantify APAs, synergies stabilizing center of pressure coordinate (within the uncontrolled manifold hypothesis), and ASA. APAs and ASAs were seen in all conditions. APAs were delayed, and predominance of co-contraction patterns was seen under the conditions with unpredictable direction of perturbation. In contrast, no significant changes in synergies and ASAs were seen. Overall, these results show that feed-forward control of vertical posture has two distinct components, reflected in APAs and ASAs, which show qualitatively different adjustments with changes in predictability of the direction of perturbation. These results are interpreted within the recently proposed hierarchical scheme of the synergic control of motor tasks. The observations underscore the complexity of the feed-forward postural control, which involves separate changes in salient performance variables (such as coordinate of the center of pressure) and in their stability properties.


Experimental Brain Research | 2015

Force-stabilizing synergies in motor tasks involving two actors

Stanislaw Solnik; Sasha Reschechtko; Yen-Hsun Wu; Vladimir M. Zatsiorsky; Mark L. Latash

We investigated the ability of two persons to produce force-stabilizing synergies in accurate multi-finger force production tasks under visual feedback on the total force only. The subjects produced a time profile of total force (the sum of two hand forces in one-person tasks and the sum of two subject forces in two-person tasks) consisting of a ramp-up, steady-state, and ramp-down segments; the steady-state segment was interrupted in the middle by a quick force pulse. Analyses of the structure of inter-trial finger force variance, motor equivalence, anticipatory synergy adjustments (ASAs), and the unintentional drift of the sharing pattern were performed. The two-person performance was characterized by a dramatically higher amount of inter-trial variance that did not affect total force, higher finger force deviations that did not affect total force (motor equivalent deviations), shorter ASAs, and larger drift of the sharing pattern. The rate of sharing pattern drift correlated with the initial disparity between the forces produced by the two persons (or two hands). The drift accelerated following the quick force pulse. Our observations show that sensory information on the task-specific performance variable is sufficient for the organization of performance-stabilizing synergies. They suggest, however, that two actors are less likely to follow a single optimization criterion as compared to a single performer. The presence of ASAs in the two-person condition might reflect fidgeting by one or both of the subjects. We discuss the characteristics of the drift in the sharing pattern as reflections of different characteristic times of motion within the subspaces that affect and do not affect salient performance variables.


Experimental Brain Research | 2016

Interpersonal synergies: static prehension tasks performed by two actors

Stanislaw Solnik; Sasha Reschechtko; Yen-Hsun Wu; Vladimir M. Zatsiorsky; Mark L. Latash

We investigated multidigit synergies stabilizing components of the resultant force vector during joint performance of a static prehension task by two persons as compared to similar tasks performed by a single person using both hands. Subjects transferred the instrumented handle from the right hand to the left hand (one-person condition) or passed that handle to another person (two-person condition) while keeping the handle’s position and orientation stationary. Only three digits were involved per hand, the thumb, the index finger, and the middle finger; the forces and moments produced by the digits were measured by six-component sensors. We estimated the performance-stabilizing synergies within the uncontrolled manifold framework by quantifying the intertrial variance structure of digit forces and moments. The analysis was performed at three levels: between hands, between virtual finger and virtual thumb (imagined digits producing the same mechanical variables as the corresponding actual digits combined) produced by the two hands (in both interpersonal and intrapersonal conditions), and between the thumb and virtual finger for one hand only. Additionally, we performed correlation and phase synchronization analyses of resultant tangential forces and internal normal forces. Overall, the one-person conditions were characterized by higher amount of intertrial variance that did not affect resultant normal force components, higher internal components of normal forces, and stronger synchronization of the normal forces generated by the hands. Our observations suggest that in two-person tasks, when participants try to achieve a common mechanical outcome, the performance-stabilizing synergies depend on non-visual information exchange, possibly via the haptic and proprioceptive systems. Therefore, synergies quantified in tasks using visual feedback only may not be generalizable to more natural tasks.


Experimental Brain Research | 2017

Effects of visual feedback and memory on unintentional drifts in performance during finger-pressing tasks

Stanislaw Solnik; Mu Qiao; Mark L. Latash

This study tested two hypotheses on the nature of unintentional force drifts elicited by removing visual feedback during accurate force production tasks. The role of working memory (memory hypothesis) was explored in tasks with continuous force production, intermittent force production, and rest intervals over the same time interval. The assumption of unintentional drifts in referent coordinate for the fingertips was tested using manipulations of visual feedback: young healthy subjects performed accurate steady-state force production tasks by pressing with the two index fingers on individual force sensors with visual feedback on the total force, sharing ratio, both, or none. Predictions based on the memory hypothesis have been falsified. In particular, we observed consistent force drifts to lower force values during continuous force production trials only. No force drift or drifts to higher forces were observed during intermittent force production trials and following rest intervals. The hypotheses based on the idea of drifts in referent finger coordinates have been confirmed. In particular, we observed superposition of two drift processes: a drift of total force to lower magnitudes and a drift of the sharing ratio to 50:50. When visual feedback on total force only was provided, the two-finger forces showed drifts in opposite directions. We interpret the findings as evidence for the control of motor actions with changes in referent coordinates for participating effectors. Unintentional drifts in performance are viewed as natural relaxation processes in the involved systems; their typical time reflects stability in the direction of the drift. The magnitude of the drift was higher in the right (dominant) hand, which is consistent with the dynamic dominance hypothesis.

Collaboration


Dive into the Stanislaw Solnik's collaboration.

Top Co-Authors

Avatar

Mark L. Latash

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Tibor Hortobágyi

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali Falaki

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Daniele Piscitelli

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Patrick Rider

East Carolina University

View shared research outputs
Top Co-Authors

Avatar

Paul DeVita

East Carolina University

View shared research outputs
Top Co-Authors

Avatar

David A. Rosenbaum

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Mariusz P. Furmanek

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Yen-Hsun Wu

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge