Stanisława Kluska
AGH University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stanisława Kluska.
Materials Science-poland | 2013
Jadwiga Konefał-Góral; Anna Małek; Stanisława Kluska; Witold Jastrzębski; Sławomir Zimowski; Stanisława Jonas; Jerzy Lis
This work reports the results concerning formation and tribological properties of SiCxNy(H) layers deposited on Ti Grade 2 and polyurethane foil. Depending on the substrate, two variants of PACVD were used. The SiCxNy(H) layers on titanium were deposited with application of MWCVD (2.45 GHz, 2 kW). The layers on polyurethane were deposited using RFCVD (13.56 MHz, 400 W). Good adhesion between the SiCxNy(H) layers and polymeric foil was achieved by formation of a transitional C:N:H layer and incorporating Si gradient into the structure of the SiCxNy(H) layer. The chemical composition of the layers was tailored by precise control of the gaseous precursors ratios: [SiH4]/[NH3], [SIH4]/[NH3]/[CH4], [SiH4]/[CH4] or [SiH4]/[N2]/[CH4]. The structure and chemical composition of the obtained layers were subjected to further studies (FTIR, SEM/EDS). The roughness, friction coefficient and wear resistance were also measured. The results show that SiCxNy(H) layers offer attractive tribological properties which make them good candidates for various applications, including biomedical devices.
Electron Technology Conference ELTE 2016 | 2016
Barbara Swatowska; Stanisława Kluska; Gabriela Lewińska; Julia Golańska; Tomasz Stapinski
Amorphous a-SiCxNy:H thin films may be an alternative to a-Si:N:H coatings which are commonly used in silicon solar cells. This material was obtained by PECVD (13.56 MHz) method. The reaction gases used: silane, methane, nitrogen and ammonia. The structure of the layers were investigated by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). IR absorption spectra of a-SiCxNy:H layers confirmed the presence of various hydrogen bonds – it is important for passivation of Si structural defects. The ellipsometric measurements were implemented to determine the thickness of layers d, refractive index n, extinction coefficient k and energy gap Eg. The values of the energy gap of a-SiCxNy:H layers are in the range from 1.89 to 4.34 eV. The correlation between energy gap of materials and refractive index was found. Generally the introduction of N and/or C into the amorphous silicon network rapidly increases the Eg values.
High Temperature Materials and Processes | 2014
Stanisława Jonas; Jadwiga Konefał-Góral; Anna Małek; Stanisława Kluska; Zbigniew Grzesik
Abstract Four different layers of various silicon, carbon and nitrogen contents on the Ti6Al4V alloy and (001)Si wafers have been deposited by means of Plasma Assisted Chemical Vapor Deposition (PACVD) method. The layers were obtained from reactive gas mixture containing SiH4, CH4, NH3 and Ar. After deposition the structure and chemical composition of modified surfaces have been analyzed with use of SEM/EDS technique. Based on these results and thermodynamic calculations, the diffusion coefficients, D, for nitrogen and carbon in alloy were discussed. Scratch test shown that silicon carbonitride layers have good adhesion to metal surface. In order to determine atomic structure of obtained layers, FTIR spectra for layer-(001)Si and layer-Ti6Al4V were registered.
Solid State Phenomena | 2013
Marta Januś; Jadwiga Konefał-Góral; Anna Małek; Stanisława Kluska; Witold Jastrzębski; Sławomir Zimowski; Stanisława Jonas
One way of obtaining new materials with different properties is to modify existing ones to improve their insufficient properties. Due to the fact that many of the useful properties of materials, including wear and corrosion resistance, friction coefficient and biocompatibility, depend on the state of the surface, modern surface engineering methods are especially helpful. They involve the deposition of the layers with tailored chemical composition and structure. In terms of medical applications, amorphous or nanocrystalline layers containing carbon, nitrogen, silicon and hydrogen appear to be the most suitable. They combine the beneficial properties of silicon carbide SiC and silicon nitride Si3N4, and thus exhibit a strong resistance to oxidation at high temperatures, high modulus of elasticity, low friction coefficient and wear resistance. However, silicon carbonitride compound is not stable thermodynamically in normal conditions and therefore it must be obtained by non-conventional synthesis. One of such method is Plasma Assisted Chemical Vapour Deposition (PACVD). The authors of this paper anticipate that the modification of titanium surface by SiCxNy(H) layers make them proper for use as materials for long-term contact with human body. It contains results of research on titanium Ti Grade 2 surface modification by deposition amorphous carbon layers doped with nitrogen (a-C:N:H) and silicon carbonitride layers SiCxNy(H). What is more, for IR analysis, in the same plasmochemical methods process obtain layers on monocrystaline silicon (001)Si. The layers were synthesis by PACVD with plasma generated by radio waves (RFCVD, 400 W, 13.56 MHz) for a-C:N:H layers and microwaves (MWCVD, 2 kW, 2.45 GHz) for layers containing silicon, carbon, nitrogen and hydrogen. During deposition process metallic surface were ion-etching by argon plasma. The layers were obtained from reactive gas mixture containing CH4, N2 or NH3 for a-C:N:H layers and CH4, SiH4, N2 or NH3 for silicon carbonitride compound. In this process argon was used as an inert gaseous. Process conditions allowing obtaining good adhesive layer to the metallic substrate were specified. Obtained systems were subject for further research. Chemical composition of the materials were studied by SEM / EDS techniques with application ETD and BSED detectors. Compared images registered for titanium before surface modification and surfaces covered by a-C:N:H or SiCxNy(H) layers. More information about layers structure provided FTIR spectroscopy. Spectra FTIR was register transmition for (001)Si-layer and reflective for titanium-layer systems. Assessed the impact of different kind of substrate on the layers deposited structure. Operational properties of synergic layer-titanium systems were evaluated in the measurements of tribological parameters. This tests shown that silicon carbonitride layers have the lowest friction coefficient and the highest resistance to wear. Furthermore, it was possible, on the basis of the obtained result, to indicate directions the surface modifications ensuring optimization on their usable properties as medicine and another industries. In previous authors paper the layers were investigated in the aspect of possible application in medicine.
High Temperature Materials and Processes | 2013
Stanisława Kluska; Elżbieta Pamuła; Stanisława Jonas; Zbigniew Grzesik
Abstract The surface of the polyetheretherketone (PEEK) samples was modified by the plasma enhanced chemical vapor deposition (PECVD) in the mixture of He and N2 as well as in the N2O atmosphere. Morphological characterization of the PEEK as well as its surface roughness, chemical structure, and surface free energy were investigated by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and sessile drop technique, respectively. The highest increase in the polar component of the total surface energy was observed for PEEK modified by He+N2 plasma, which correlated with significant increase in the concentration of oxygen and nitrogen-containing chemical functionalities as revealed by XPS. For PEEK submitted to N2O plasma treatment significant changes in surface topography and increase in roughness were observed, but changes in surface chemistry and surface free energy were mild.
Applied Surface Science | 2004
Tomasz Stapinski; Barbara Swatowska; Stanisława Kluska; E. Walasek
Archives of Metallurgy and Materials | 2015
Marta Januś; Karol Kyzioł; Stanisława Kluska; J. Konefał-Góral; A. Małek; Stanisława Jonas
Vacuum | 2008
Maria Jurzecka; Stanisława Kluska; Stanisława Jonas; Halina Czternastek; K. Zakrzewska
Applied Surface Science | 2016
Barbara Swatowska; Stanisława Kluska; Maria Jurzecka-Szymacha; Tomasz Stapinski; Katarzyna Tkacz-Smiech
Applied Surface Science | 2014
Karol Kyzioł; Stanisława Kluska; Marta Januś; Marcin Środa; Witold Jastrzębski; Łukasz Kaczmarek