Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stanley E. Church is active.

Publication


Featured researches published by Stanley E. Church.


Environmental Toxicology and Chemistry | 2010

Development of a new toxic‐unit model for the bioassessment of metals in streams

Travis S. Schmidt; William H. Clements; Katharine A. Mitchell; Stanley E. Church; Richard B. Wanty; David L. Fey; Philip L. Verplanck; Carma A. San Juan

Two toxic-unit models that estimate the toxicity of trace-metal mixtures to benthic communities were compared. The chronic criterion accumulation ratio (CCAR), a modification of biotic ligand model (BLM) outputs for use as a toxic-unit model, accounts for the modifying and competitive influences of major cations (Ca²(+), Mg²(+), Na(+), K(+), H(+)), anions (HCO₃⁻, CO²⁻₃ ,SO²⁻₄, Cl⁻, S²⁻) and dissolved organic carbon (DOC) in determining the free metal ion available for accumulation on the biotic ligand. The cumulative criterion unit (CCU) model, an empirical statistical model of trace-metal toxicity, considers only the ameliorative properties of Ca²(+) and Mg²(+) (hardness) in determining the toxicity of total dissolved trace metals. Differences in the contribution of a metal (e.g., Cu, Cd, Zn) to toxic units as determined by CCAR or CCU were observed and attributed to how each model incorporates the influences of DOC, pH, and alkalinity. Akaike information criteria demonstrate that CCAR is an improved predictor of benthic macroinvertebrate community metrics as compared with CCU. Piecewise models depict great declines (thresholds) in benthic macroinvertebrate communities at CCAR of 1 or more, while negative changes in benthic communities were detected at a CCAR of less than 1. We observed a 7% reduction in total taxa richness and a 43% decrease in Heptageniid abundance between background (CCAR = 0.1) and the threshold of chronic toxicity on the basis of continuous chronic criteria (CCAR = 1). In this first application of the BLM as a toxic-unit model, we found it superior to CCU.


Journal of Geochemical Exploration | 1987

Mineralogical basis for the interpretation of multi-element (ICP-AES), oxalic acid, and aqua regia partial digestions of stream sediments for reconnaissance exploration geochemistry

Stanley E. Church; E.L. Mosier; J.M. Motooka

Abstract We have applied partial digestion procedures, primarily oxalic acid and aqua regia leaches, to several regional geochemical reconnaissance studies carried out using Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) analytical methods. We have chosen to use these two acids because the oxalic acid primarily attacks those compounds formed during secondary geochemical processes, whereas aqua regia will digest the primary sulfide phases as well as secondary phases. Application of the partial digestion technique has proven superior to total digestion because the concentration of metals in hydromorphic compounds and the sulfides is enhanced relative to the metals bound in the unattacked silicate phases. The aqua regia digestion attacks and leaches metals from the mafic chain silicates and the phyllosilicates (coordination number of VI or more), yielding a characteristic geochemical signature, but does not leach appreciable metal from many other silicates. In order to interpret the results from these leach studies, we have initiated an investigation of a large suite of hand-picked mineral separates. The study includes analyses of about two hundred minerals representing the common rock-forming minerals as well as end-member compositions of various silicates, oxides, sulfides, carbonates, sulfates, and some vanadates, molybdates, tungstates, and phosphates. The objective of this study is to evaluate the effect of leaching by acids of particular lattice sites in specific mineral structures.


Environmental Science & Technology | 2011

Critical tissue residue approach linking accumulated metals in aquatic insects to population and community-level effects.

Travis S. Schmidt; William H. Clements; Robert E. Zuellig; Katharine A. Mitchell; Stanley E. Church; Richard B. Wanty; Carma A. San Juan; Monique Adams; Paul J. Lamothe

Whole body Zn concentrations in individuals (n = 825) from three aquatic insect taxa (mayflies Rhithrogena spp. and Drunella spp. and the caddisfly Arctopsyche grandis) were used to predict effects on populations and communities (n = 149 samples). Both mayflies accumulated significantly more Zn than the caddisfly. The presence/absence of Drunella spp. most reliably distinguished sites with low and high Zn concentrations; however, population densities of mayflies were more sensitive to increases in accumulated Zn. Critical tissue residues (634 μg/g Zn for Drunella spp. and 267 μg/g Zn for Rhithrogena spp.) caused a 20% reduction in maximum (90th quantile) mayfly densities. These critical tissue residues were associated with exposure to 7.0 and 3.9 μg/L dissolved Zn for Drunella spp. and Rhithrogena spp., respectively. A threshold in a measure of taxonomic completeness (observed/expected) was observed at 5.4 μg/L dissolved Zn. Dissolved Zn concentrations associated with critical tissue residues in mayflies were also associated with adverse effects in the aquatic community as a whole. These effects on populations and communities occurred at Zn concentrations below the U.S. EPA hardness-adjusted continuous chronic criterion.


Applied Geochemistry | 1992

Lead isotopes in iron and manganese oxide coatings and their use as an exploration guide for concealed mineralization

Brian L. Gulson; Stanley E. Church; Karen J. Mizon; Allen L. Meier

Abstract Lead isotopes from Fe and Mn oxides that coat stream pebbles from around the Mount Emmons porphyry molybdenum deposit in Colorado were studied to assess the feasibility of using Pb isotopes to detect concealed mineral deposits. The Fe/Mn oxide coatings were analyzed to determine their elemental concentrations using ICP-AES. The Pb isotope compositions of solutions from a selected suite of samples were measured, using both thermal ionization and ICP mass spectrometry, to compare results determined by the two analytical methods. Heavy mineral concentrates from the same sites were also analyzed to compare the Pb isotope compositions of the Fe/Mn coatings with those found in panned concentrates. The Fe/Mn and 206 Pb/ 204 Pb ratios of the oxide coatings are related to the lithology of the host rocks; Fe/Mn oxide coatings on pebbles of black shale have higher Fe/Mn values than do the coatings on either sandstone or igneous rocks. The shale host rocks have a more radiogenic signature (e.g. higher 206 Pb/ 204 Pb) than the sandstone or igneous host rocks. The Pb isotope data from sandstone and igneous hosts can detect concealed mineralized rock on both a regional and local scale, even though there are contributions from: (1) metals from the main-stage molybdenite ore deposit; (2) metals from the phyllic alteration zone which has a more radiogenic Pb isotope signature reflecting hydrothermal leaching of Pb from the Mancos Shale; (3) Pb-rich base metal veins with a highly variable Pb isotope signature; and (4) sedimentary country rocks which have a more radiogenic Pb isotope signature. An investigation of within-stream variation shows that the Pb isotope signature of the molybdenite ore zone is retained in the Fe/Mn oxide coatings and is not camouflaged by contributions from Pb-rich base-metal veins that crop out upstream. In another traverse, the Pb isotope data from Fe/Mn oxide coatings reflect a complex mixing of Pb from the molybdenite ore zone and its hornfels margin, Pb-rich base-metal veins, and sedimentary country rocks. Stream-sediment anomalies detected using oxalic acid leaches can be evaluated using Pb isotope analysesof selected geochemical anomalies. Such an evaluation procedure, given regional target Pb isotope signatures for concealed mineralization, can greatly reduce the cost of exploration for undiscovered ore deposits concealed beneath barren overburden. Lead isotope measurements on aliquots of the same solutions showed that ICP-MS determinations are of low precision and vary non-systematically when compared with the Pb isotope values of the higher precision thermal ionization method. These variations and lower precision of the ICP-MS measurements are attributed to matrix effects.


Journal of the American Society of Mining and Reclamation | 2006

Predicting toxic effects of copper on aquatic biota in mineralized areas by using the Biotic Ligand Model

Kathleen S. Smith; James F. Ranville; Marti K. Adams; LaDonna M. Choate; Stanley E. Church; David L. Fey; Richard B. Wanty; James G. Crock

The chemical speciation of metals influences their biological effects. The Biotic Ligand Model (BLM) is a computational approach to predict chemical speciation and acute toxicological effects of metals on aquatic biota. Recently, the U.S. Environmental Protection Agency incorporated the BLM into their regulatory waterquality criteria for copper. Results from three different laboratory copper toxicity tests were compared with BLM predictions for simulated test-waters. This was done to evaluate the ability of the BLM to accurately predict the effects of hardness and concentrations of dissolved organic carbon (DOC) and iron on aquatic toxicity. In addition, we evaluated whether the BLM and the three toxicity tests provide consistent results. Comparison of BLM predictions with two types of Ceriodaphnia dubia toxicity tests shows that there is fairly good agreement between predicted LC50 values computed by the BLM and LC50 values determined from the two toxicity tests. Specifically, the effect of increasing calcium concentration (and hardness) on copper toxicity appears to be minimal. Also, there is fairly good agreement between the BLM and the two toxicity tests for test solutions containing elevated DOC, for which the LC50 is 3-to-5 times greater (less toxic) than the LC50 for the lower-DOC test water. This illustrates the protective effects of DOC on copper toxicity and demonstrates the ability of the BLM to predict these protective effects. In contrast, for test solutions with added iron there is a decrease in LC50 values (increase in toxicity) in results from the two C. dubia toxicity tests, and the agreement between BLM LC50 predictions and results from these toxicity tests is poor. The inability of the BLM to account for competitive iron binding to DOC or DOC fractionation may be a significant shortcoming of the BLM for predicting site-specific water-quality criteria in streams affected by iron-rich acidic drainage in mined and mineralized areas. Additional


Geochemistry-exploration Environment Analysis | 2009

Metal contamination and post-remediation recovery in the Boulder River watershed, Jefferson County, Montana.

Daniel M. Unruh; Stanley E. Church; David A. Nimick; David L. Fey

ABSTRACT The legacy of acid mine drainage and toxic trace metals left in streams by historical mining is being addressed by many important yet costly remediation efforts. Monitoring of environmental conditions frequently is not performed but is essential to evaluate remediation effectiveness, determine whether clean-up goals have been met, and assess which remediation strategies are most effective. Extensive pre- and post-remediation data for water and sediment quality for the Boulder River watershed in southwestern Montana provide an unusual opportunity to demonstrate the importance of monitoring. The most extensive restoration in the watershed occurred at the Comet mine on High Ore Creek and resulted in the most dramatic improvement in aquatic habitat. Removal of contaminated sediment and tailings, and stream-channel reconstruction reduced Cd and Zn concentrations in water such that fish are now present, and reduced metal concentrations in streambed sediment by a factor of c. 10, the largest improvement in the district. Waste removals at the Buckeye/Enterprise and Bullion mine sites produced limited or no improvement in water and sediment quality, and acidic drainage from mine adits continues to degrade stream aquatic habitat. Recontouring of hillslopes that had funnelled runoff into the workings of the Crystal mine substantially reduced metal concentrations in Uncle Sam Gulch, but did not eliminate all of the acidic adit drainage. Lead isotopic evidence suggests that the Crystal mine rather than the Comet mine is now the largest source of metals in streambed sediment of the Boulder River. The completed removal actions prevent additional contaminants from entering the stream, but it may take many years for erosional processes to diminish the effects of contaminated sediment already in streams. Although significant strides have been made, additional efforts to seal draining adits or treat the adit effluent at the Bullion and Crystal mines would need to be completed to achieve the desired restoration. SUPPLEMENTARY MATERIAL Analytical data for all post-remediation samples is available at: http://www.geolsoc.org.uk/SUP18344.


Journal of Geochemical Exploration | 1989

A comparison of lead-isotope measurements on exploration-type samples using inductively coupled plasma and thermal ionization mass spectrometry

Brian L. Gulson; Allen L. Meier; Stanley E. Church; Karen J. Mizon

Abstract Thermal ionization mass spectrometry (TI-MS) has long been the method of choice for Pb-isotope determinations. More recently, however, inductively coupled plasma mass spectrometry (ICP-MS) has been used to determine Pb-isotope ratios for mineral exploration. The ICP-MS technique, although not as precise as TI-MS, may promote a wider application of Ph-isotope ratio methods because it allows individual isotopes to be determined more rapidly, generally without need for chemical separation (e.g., Smith et al., 1984; Hinners et al., 1987). To demonstrate the utility of the ICP-MS method, we have conducted a series of Pb-isotope measurements on several suites of samples using both TI-MS and ICP-MS.


Scientific Investigations Report | 2005

Geochemical assessment of metals and dioxin in sediment from the San Carlos Reservoir and the Gila, San Carlos, and San Francisco Rivers, Arizona

Stanley E. Church; LaDonna M. Choate; Marci E. Marot; David L. Fey; Monique Adams; Paul H. Briggs; Zoe Ann Brown

..........................................................................................................................................................


Archives of Environmental Contamination and Toxicology | 2001

Bioavailability of metals in stream food webs and hazards to brook trout (Salvelinus fontinalis) in the upper Animas River watershed, Colorado.

John M. Besser; William G. Brumbaugh; T. W. May; Stanley E. Church; Briant A. Kimball


Geostandards and Geoanalytical Research | 1981

Multi‐Element Analysis of Fifty‐Four Geochemical Reference Samples Using Inductively Coupled Plasma‐Atomic Emission Spectrometry

Stanley E. Church

Collaboration


Dive into the Stanley E. Church's collaboration.

Top Co-Authors

Avatar

David L. Fey

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

David A. Nimick

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Briant A. Kimball

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Philip L. Verplanck

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel M. Unruh

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

John M. Besser

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard B. Wanty

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge