Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stanley F. Nelson is active.

Publication


Featured researches published by Stanley F. Nelson.


Science | 2008

Rare Structural Variants Disrupt Multiple Genes in Neurodevelopmental Pathways in Schizophrenia

Tom Walsh; Jon McClellan; Shane McCarthy; Anjene Addington; Sarah B. Pierce; Greg M. Cooper; Alex S. Nord; Mary Kusenda; Dheeraj Malhotra; Abhishek Bhandari; Sunday M. Stray; Caitlin Rippey; Patricia Roccanova; Vlad Makarov; B. Lakshmi; Robert L. Findling; Linmarie Sikich; Thomas Stromberg; Barry Merriman; Nitin Gogtay; Philip Butler; Kristen Eckstrand; Laila Noory; Peter Gochman; Robert Long; Zugen Chen; Sean Davis; Carl Baker; Evan E. Eichler; Paul S. Meltzer

Schizophrenia is a devastating neurodevelopmental disorder whose genetic influences remain elusive. We hypothesize that individually rare structural variants contribute to the illness. Microdeletions and microduplications >100 kilobases were identified by microarray comparative genomic hybridization of genomic DNA from 150 individuals with schizophrenia and 268 ancestry-matched controls. All variants were validated by high-resolution platforms. Novel deletions and duplications of genes were present in 5% of controls versus 15% of cases and 20% of young-onset cases, both highly significant differences. The association was independently replicated in patients with childhood-onset schizophrenia as compared with their parents. Mutations in cases disrupted genes disproportionately from signaling networks controlling neurodevelopment, including neuregulin and glutamate pathways. These results suggest that multiple, individually rare mutations altering genes in neurodevelopmental pathways contribute to schizophrenia.


Nature | 2010

Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation

Ramin Nazarian; Hubing Shi; Qi Wang; Xiangju Kong; Richard C. Koya; Hane Lee; Zugen Chen; Mi Kyung Lee; Narsis Attar; Hooman Sazegar; Thinle Chodon; Stanley F. Nelson; Grant A. McArthur; Jeffrey A. Sosman; Antoni Ribas; Roger S. Lo

Activating B-RAF(V600E) (also known as BRAF) kinase mutations occur in ∼7% of human malignancies and ∼60% of melanomas. Early clinical experience with a novel class I RAF-selective inhibitor, PLX4032, demonstrated an unprecedented 80% anti-tumour response rate among patients with B-RAF(V600E)-positive melanomas, but acquired drug resistance frequently develops after initial responses. Hypotheses for mechanisms of acquired resistance to B-RAF inhibition include secondary mutations in B-RAF(V600E), MAPK reactivation, and activation of alternative survival pathways. Here we show that acquired resistance to PLX4032 develops by mutually exclusive PDGFRβ (also known as PDGFRB) upregulation or N-RAS (also known as NRAS) mutations but not through secondary mutations in B-RAF(V600E). We used PLX4032-resistant sub-lines artificially derived from B-RAF(V600E)-positive melanoma cell lines and validated key findings in PLX4032-resistant tumours and tumour-matched, short-term cultures from clinical trial patients. Induction of PDGFRβ RNA, protein and tyrosine phosphorylation emerged as a dominant feature of acquired PLX4032 resistance in a subset of melanoma sub-lines, patient-derived biopsies and short-term cultures. PDGFRβ-upregulated tumour cells have low activated RAS levels and, when treated with PLX4032, do not reactivate the MAPK pathway significantly. In another subset, high levels of activated N-RAS resulting from mutations lead to significant MAPK pathway reactivation upon PLX4032 treatment. Knockdown of PDGFRβ or N-RAS reduced growth of the respective PLX4032-resistant subsets. Overexpression of PDGFRβ or N-RAS(Q61K) conferred PLX4032 resistance to PLX4032-sensitive parental cell lines. Importantly, MAPK reactivation predicts MEK inhibitor sensitivity. Thus, melanomas escape B-RAF(V600E) targeting not through secondary B-RAF(V600E) mutations but via receptor tyrosine kinase (RTK)-mediated activation of alternative survival pathway(s) or activated RAS-mediated reactivation of the MAPK pathway, suggesting additional therapeutic strategies.


Nature | 2008

Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning

Shawn J. Cokus; Suhua Feng; Xiaoyu Zhang; Zugen Chen; Barry Merriman; Christian D. Haudenschild; Sriharsa Pradhan; Stanley F. Nelson; Matteo Pellegrini; Steven E. Jacobsen

Cytosine DNA methylation is important in regulating gene expression and in silencing transposons and other repetitive sequences. Recent genomic studies in Arabidopsis thaliana have revealed that many endogenous genes are methylated either within their promoters or within their transcribed regions, and that gene methylation is highly correlated with transcription levels. However, plants have different types of methylation controlled by different genetic pathways, and detailed information on the methylation status of each cytosine in any given genome is lacking. To this end, we generated a map at single-base-pair resolution of methylated cytosines for Arabidopsis, by combining bisulphite treatment of genomic DNA with ultra-high-throughput sequencing using the Illumina 1G Genome Analyser and Solexa sequencing technology. This approach, termed BS-Seq, unlike previous microarray-based methods, allows one to sensitively measure cytosine methylation on a genome-wide scale within specific sequence contexts. Here we describe methylation on previously inaccessible components of the genome and analyse the DNA methylation sequence composition and distribution. We also describe the effect of various DNA methylation mutants on genome-wide methylation patterns, and demonstrate that our newly developed library construction and computational methods can be applied to large genomes such as that of mouse.


PLOS Genetics | 2008

Resolving Individuals Contributing Trace Amounts of DNA to Highly Complex Mixtures Using High-Density SNP Genotyping Microarrays

Nils Homer; Szabolcs Szelinger; Margot Redman; David Duggan; Waibhav Tembe; Jill Muehling; John V. Pearson; Dietrich A. Stephan; Stanley F. Nelson; David Craig

We use high-density single nucleotide polymorphism (SNP) genotyping microarrays to demonstrate the ability to accurately and robustly determine whether individuals are in a complex genomic DNA mixture. We first develop a theoretical framework for detecting an individuals presence within a mixture, then show, through simulations, the limits associated with our method, and finally demonstrate experimentally the identification of the presence of genomic DNA of specific individuals within a series of highly complex genomic mixtures, including mixtures where an individual contributes less than 0.1% of the total genomic DNA. These findings shift the perceived utility of SNPs for identifying individual trace contributors within a forensics mixture, and suggest future research efforts into assessing the viability of previously sub-optimal DNA sources due to sample contamination. These findings also suggest that composite statistics across cohorts, such as allele frequency or genotype counts, do not mask identity within genome-wide association studies. The implications of these findings are discussed.


Genetics in Medicine | 2011

DNA sequencing of maternal plasma to detect Down syndrome: An international clinical validation study

Glenn E. Palomaki; Edward M. Kloza; Geralyn Lambert-Messerlian; James E. Haddow; Louis M. Neveux; Mathias Ehrich; Dirk van den Boom; Allan T. Bombard; Cosmin Deciu; Wayne W. Grody; Stanley F. Nelson; Jacob A. Canick

Purpose: Prenatal screening for Down syndrome has improved, but the number of resulting invasive diagnostic procedures remains problematic. Measurement of circulating cell-free DNA in maternal plasma might offer improvement.Methods: A blinded, nested case-control study was designed within a cohort of 4664 pregnancies at high risk for Down syndrome. Fetal karyotyping was compared with an internally validated, laboratory-developed test based on next-generation sequencing in 212 Down syndrome and 1484 matched euploid pregnancies. None had been previously tested. Primary testing occurred at a CLIA-certified commercial laboratory, with cross validation by a CLIA-certified university laboratory.Results: Down syndrome detection rate was 98.6% (209/212), the false-positive rate was 0.20% (3/1471), and the testing failed in 13 pregnancies (0.8%); all were euploid. Before unblinding, the primary testing laboratory also reported multiple alternative interpretations. Adjusting chromosome 21 counts for guanine cytosine base content had the largest impact on improving performance.Conclusion: When applied to high-risk pregnancies, measuring maternal plasma DNA detects nearly all cases of Down syndrome at a very low false-positive rate. This method can substantially reduce the need for invasive diagnostic procedures and attendant procedure-related fetal losses. Although implementation issues need to be addressed, the evidence supports introducing this testing on a clinical basis.


American Journal of Human Genetics | 2008

Linkage, Association, and Gene-Expression Analyses Identify CNTNAP2 as an Autism-Susceptibility Gene

Maricela Alarcón; Brett S. Abrahams; Jennifer Stone; Jacqueline A. Duvall; Julia V. Perederiy; Jamee M. Bomar; Jonathan Sebat; Michael Wigler; Christa Lese Martin; David H. Ledbetter; Stanley F. Nelson; Rita M. Cantor; Daniel H. Geschwind

Autism is a genetically complex neurodevelopmental syndrome in which language deficits are a core feature. We describe results from two complimentary approaches used to identify risk variants on chromosome 7 that likely contribute to the etiology of autism. A two-stage association study tested 2758 SNPs across a 10 Mb 7q35 language-related autism QTL in AGRE (Autism Genetic Resource Exchange) trios and found significant association with Contactin Associated Protein-Like 2 (CNTNAP2), a strong a priori candidate. Male-only containing families were identified as primarily responsible for this association signal, consistent with the strong male affection bias in ASD and other language-based disorders. Gene-expression analyses in developing human brain further identified CNTNAP2 as enriched in circuits important for language development. Together, these results provide convergent evidence for involvement of CNTNAP2, a Neurexin family member, in autism, and demonstrate a connection between genetic risk for autism and specific brain structures.


Cancer Research | 2004

Gene Expression Profiling of Gliomas Strongly Predicts Survival

William A. Freije; F. Edmundo Castro-Vargas; Zixing Fang; Steve Horvath; Timothy F. Cloughesy; Linda M. Liau; Paul S. Mischel; Stanley F. Nelson

In current clinical practice, histology-based grading of diffuse infiltrative gliomas is the best predictor of patient survival time. Yet histology provides little insight into the underlying biology of gliomas and is limited in its ability to identify and guide new molecularly targeted therapies. We have performed large-scale gene expression analysis using the Affymetrix HG U133 oligonucleotide arrays on 85 diffuse infiltrating gliomas of all histologic types to assess whether a gene expression-based, histology-independent classifier is predictive of survival and to determine whether gene expression signatures provide insight into the biology of gliomas. We found that gene expression-based grouping of tumors is a more powerful survival predictor than histologic grade or age. The poor prognosis samples could be grouped into three different poor prognosis groups, each with distinct molecular signatures. We further describe a list of 44 genes whose expression patterns reliably classify gliomas into previously unrecognized biological and prognostic groups: these genes are outstanding candidates for use in histology-independent classification of high-grade gliomas. The ability of the large scale and 44 gene set expression signatures to group tumors into strong survival groups was validated with an additional external and independent data set from another institution composed of 50 additional gliomas. This demonstrates that large-scale gene expression analysis and subset analysis of gliomas reveals unrecognized heterogeneity of tumors and is efficient at selecting prognosis-related gene expression differences which are able to be applied across institutions.


PLOS ONE | 2009

BFAST: An Alignment Tool for Large Scale Genome Resequencing

Nils Homer; Barry Merriman; Stanley F. Nelson

BACKGROUND The new generation of massively parallel DNA sequencers, combined with the challenge of whole human genome resequencing, result in the need for rapid and accurate alignment of billions of short DNA sequence reads to a large reference genome. Speed is obviously of great importance, but equally important is maintaining alignment accuracy of short reads, in the 25-100 base range, in the presence of errors and true biological variation. METHODOLOGY We introduce a new algorithm specifically optimized for this task, as well as a freely available implementation, BFAST, which can align data produced by any of current sequencing platforms, allows for user-customizable levels of speed and accuracy, supports paired end data, and provides for efficient parallel and multi-threaded computation on a computer cluster. The new method is based on creating flexible, efficient whole genome indexes to rapidly map reads to candidate alignment locations, with arbitrary multiple independent indexes allowed to achieve robustness against read errors and sequence variants. The final local alignment uses a Smith-Waterman method, with gaps to support the detection of small indels. CONCLUSIONS We compare BFAST to a selection of large-scale alignment tools -- BLAT, MAQ, SHRiMP, and SOAP -- in terms of both speed and accuracy, using simulated and real-world datasets. We show BFAST can achieve substantially greater sensitivity of alignment in the context of errors and true variants, especially insertions and deletions, and minimize false mappings, while maintaining adequate speed compared to other current methods. We show BFAST can align the amount of data needed to fully resequence a human genome, one billion reads, with high sensitivity and accuracy, on a modest computer cluster in less than 24 hours. BFAST is available at (http://bfast.sourceforge.net).


Proceedings of the National Academy of Sciences of the United States of America | 2006

Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target

Steve Horvath; Bin Zhang; Marc Carlson; K. V. Lu; S. Zhu; R. M. Felciano; M. F. Laurance; Wenqing Zhao; S. Qi; Z. Chen; Y. Lee; A. C. Scheck; Linda M. Liau; Hong Wu; Daniel H. Geschwind; P. G. Febbo; Harley I. Kornblum; Timothy F. Cloughesy; Stanley F. Nelson; Paul S. Mischel

Glioblastoma is the most common primary malignant brain tumor of adults and one of the most lethal of all cancers. Patients with this disease have a median survival of 15 months from the time of diagnosis despite surgery, radiation, and chemotherapy. New treatment approaches are needed. Recent works suggest that glioblastoma patients may benefit from molecularly targeted therapies. Here, we address the compelling need for identification of new molecular targets. Leveraging global gene expression data from two independent sets of clinical tumor samples (n = 55 and n = 65), we identify a gene coexpression module in glioblastoma that is also present in breast cancer and significantly overlaps with the “metasignature” for undifferentiated cancer. Studies in an isogenic model system demonstrate that this module is downstream of the mutant epidermal growth factor receptor, EGFRvIII, and that it can be inhibited by the epidermal growth factor receptor tyrosine kinase inhibitor Erlotinib. We identify ASPM (abnormal spindle-like microcephaly associated) as a key gene within this module and demonstrate its overexpression in glioblastoma relative to normal brain (or body tissues). Finally, we show that ASPM inhibition by siRNA-mediated knockdown inhibits tumor cell proliferation and neural stem cell proliferation, supporting ASPM as a potential molecular target in glioblastoma. Our weighted gene coexpression network analysis provides a blueprint for leveraging genomic data to identify key control networks and molecular targets for glioblastoma, and the principle eluted from our work can be applied to other cancers.


Genetics in Medicine | 2012

DNA sequencing of maternal plasma reliably identifies trisomy 18 and trisomy 13 as well as Down syndrome: an international collaborative study.

Glenn E. Palomaki; Cosmin Deciu; Edward M. Kloza; Geralyn Lambert-Messerlian; James E. Haddow; Louis M. Neveux; Mathias Ehrich; Dirk van den Boom; Allan T. Bombard; Wayne W. Grody; Stanley F. Nelson; Jacob A. Canick

Purpose:To determine whether maternal plasma cell–free DNA sequencing can effectively identify trisomy 18 and 13.Methods:Sixty-two pregnancies with trisomy 18 and 12 with trisomy 13 were selected from a cohort of 4,664 pregnancies along with matched euploid controls (including 212 additional Down syndrome and matched controls already reported), and their samples tested using a laboratory-developed, next-generation sequencing test. Interpretation of the results for chromosome 18 and 13 included adjustment for CG content bias.Results:Among the 99.1% of samples interpreted (1,971/1,988), observed trisomy 18 and 13 detection rates were 100% (59/59) and 91.7% (11/12) at false-positive rates of 0.28% and 0.97%, respectively. Among the 17 samples without an interpretation, three were trisomy 18. If z-score cutoffs for trisomy 18 and 13 were raised slightly, the overall false-positive rates for the three aneuploidies could be as low as 0.1% (2/1,688) at an overall detection rate of 98.9% (280/283) for common aneuploidies. An independent academic laboratory confirmed performance in a subset.Conclusion:Among high-risk pregnancies, sequencing circulating cell–free DNA detects nearly all cases of Down syndrome, trisomy 18, and trisomy 13, at a low false-positive rate. This can potentially reduce invasive diagnostic procedures and related fetal losses by 95%. Evidence supports clinical testing for these aneuploidies.Genet Med 2012:14(3):296–305

Collaboration


Dive into the Stanley F. Nelson's collaboration.

Top Co-Authors

Avatar

Hane Lee

University of California

View shared research outputs
Top Co-Authors

Avatar

Zugen Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Barry Merriman

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul S. Mischel

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Ascia Eskin

University of California

View shared research outputs
Top Co-Authors

Avatar

Linda M. Liau

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge