Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stanley H. Benedict is active.

Publication


Featured researches published by Stanley H. Benedict.


Medical Physics | 2010

Stereotactic body radiation therapy: The report of AAPM Task Group 101

Stanley H. Benedict; Kamil M. Yenice; D Followill; James M. Galvin; William H. Hinson; Brian D. Kavanagh; P Keall; Michael Lovelock; Sanford L. Meeks; Lech Papiez; Thomas G. Purdie; R Sadagopan; Michael C. Schell; Bill J. Salter; David Schlesinger; Almon S. Shiu; Timothy D. Solberg; Danny Y. Song; Volker W. Stieber; Robert D. Timmerman; Wolfgang A. Tomé; Dirk Verellen; Lu Wang; Fang-Fang Yin

Task Group 101 of the AAPM has prepared this report for medical physicists, clinicians, and therapists in order to outline the best practice guidelines for the external-beam radiation therapy technique referred to as stereotactic body radiation therapy (SBRT). The task group report includes a review of the literature to identify reported clinical findings and expected outcomes for this treatment modality. Information is provided for establishing a SBRT program, including protocols, equipment, resources, and QA procedures. Additionally, suggestions for developing consistent documentation for prescribing, reporting, and recording SBRT treatment delivery is provided.


International Journal of Radiation Oncology Biology Physics | 2010

Chest Wall Volume Receiving >30 Gy Predicts Risk of Severe Pain and/or Rib Fracture After Lung Stereotactic Body Radiotherapy

N.E. Dunlap; Jing Cai; G.B. Biedermann; Wensha Yang; Stanley H. Benedict; Ke Sheng; Tracey E. Schefter; Brian D. Kavanagh; James M. Larner

PURPOSE To identify the dose-volume parameters that predict the risk of chest wall (CW) pain and/or rib fracture after lung stereotactic body radiotherapy. METHODS AND MATERIALS From a combined, larger multi-institution experience, 60 consecutive patients treated with three to five fractions of stereotactic body radiotherapy for primary or metastatic peripheral lung lesions were reviewed. CW pain was assessed using the Common Toxicity Criteria for pain. Peripheral lung lesions were defined as those located within 2.5 cm of the CW. A minimal point dose of 20 Gy to the CW was required. The CW volume receiving >or=20, >or=30, >or=40, >or=50, and >or=60 Gy was determined and related to the risk of CW toxicity. RESULTS Of the 60 patients, 17 experienced Grade 3 CW pain and five rib fractures. The median interval to the onset of severe pain and/or fracture was 7.1 months. The risk of CW toxicity was fitted to the median effective concentration dose-response model. The CW volume receiving 30 Gy best predicted the risk of severe CW pain and/or rib fracture (R(2) = 0.9552). A volume threshold of 30 cm(3) was observed before severe pain and/or rib fracture was reported. A 30% risk of developing severe CW toxicity correlated with a CW volume of 35 cm(3) receiving 30 Gy. CONCLUSION The development of CW toxicity is clinically relevant, and the CW should be considered an organ at risk in treatment planning. The CW volume receiving 30 Gy in three to five fractions should be limited to <30 cm(3), if possible, to reduce the risk of toxicity without compromising tumor coverage.


International Journal of Radiation Oncology Biology Physics | 1998

A comparison of three stereotactic radiotherapy techniques; arcs vs. noncoplanar fixed fields vs. intensity modulation

Robert M. Cardinale; Stanley H. Benedict; Qiuwen Wu; Robert D. Zwicker; Hani E. Gaballa; Radhe Mohan

PURPOSE Linac arc based stereotactic radiotherapy is being used with increasing frequency to treat brain tumors. This approach can be used for single or fractionated treatments, and is typically carried out with circular collimators which are optimal for small, spherical targets. Treatment planning using fixed noncoplanar beams or intensity-modulated beams may enhance the ability to conform to irregularly shaped and/or large tumors, especially when combined with stereotactic localization. We compare the dose conformity and normal brain dose characteristics of three stereotactic techniques for various nonspherical target shapes. METHODS AND MATERIALS Three intracranial test targets were constructed using a 3D treatment planning system after a patient underwent CT simulation. The targets included an ellipsoid with major axis dimensions of 4.0, 2.0, and 2.0 cm, a hemisphere with a diameter of 4.0 cm, and an irregularly shaped patient tumor with a maximum dimension of 5.3 cm. The following stereotactic techniques were compared for each target: a) 5 arcs as used in traditional linac radiosurgery/radiotherapy (noncoplanar arcs [ARCS]), b) 6 fixed noncoplanar custom blocked fields (3D), c) intensity modulation using 6 noncoplanar beams and a mini-multileaf collimator (intensity-modulated radiation therapy [IMRTI). Dose volume histograms were performed for each target/technique combination. RESULTS For the ellipsoid, dose conformity is similar for all three techniques and normal brain isodose distributions are more favorable with the ARCS plan. For the hemisphere and irregular tumor targets, dose conformity and high/low isodose normal brain volumes are more favorable with the IMRT technique. CONCLUSIONS For the targets described above, the intensity-modulated technique results in improved dose conformity and decreased dose to nontarget brain in high and low isodose regions as compared to the standard noncoplanar arc technique or noncoplanar fixed fields for the hemisphere and tumor targets. Intensity-modulated treatment delivery may allow for an increase in the therapeutic ratio for treating stereotactically defined large and/or irregularly shaped intracranial targets.


International Journal of Radiation Oncology Biology Physics | 2001

Intensity-modulated stereotactic radiosurgery using dynamic micro-multileaf collimation.

Stanley H. Benedict; Robert M. Cardinale; Qiuwen Wu; Robert D. Zwicker; William C. Broaddus; Radhe Mohan

PURPOSE The implementation of dynamic leaf motion on a micro-multileaf collimator system provides the capability for intensity-modulated stereotactic radiosurgery (IMSRS), and the consequent potential for improved dose distributions for irregularly shaped tumor volumes adjacent to critical organs. This study explores the use of IMSRS to provide improved tumor coverage and normal tissue sparing for small cranial tumors relative to plans based on multiple fixed uniform-intensity beams or traditional circular collimator arc-based stereotactic techniques. METHODS AND MATERIALS Four patient cases involving small brain lesions are presented and analyzed. The cases were chosen to include a representative selection of target shapes, number of targets, and adjacent critical areas. Patient plans generated for these comparisons include standard arcs with multiple circular collimators, and fixed noncoplanar static fields with uniform-intensity beams and IMSRS. Parameters used for evaluation of the plans include the percentage of irradiated volume to tumor volume (PITV), normal tissue dose-volume histograms, and dose-homogeneity ratios. All IMSRS plans were computed using previously established IMRT techniques adapted for use with the BrainLAB M3 micro-multileaf collimator. The algorithms comprising the IMRT system for optimization of intensity distributions and conversion into leaf trajectories of the BrainLab M3 were developed at our institution. The ADAC Pinnacle(3) radiation treatment-planning system was used for dose calculations and for input of contours for target volumes and normal critical structures. RESULTS For all cases, the IMSRS plans showed a high degree of conformity of the dose distribution with the target shape. The IMSRS plans provided either (1) a smaller volume of normal tissue irradiated to significant dose levels, generally taken as doses greater than 50% of the prescription, or (2) a lower dose to an important adjacent critical organ. The reduction in volume of normal tissue irradiated in the IMSRS plans ranged from 10% to 50% relative to the other arc and uniform fixed-field plans. CONCLUSION The case studies presented for IMSRS demonstrate significant dosimetric improvements for small, irregularly shaped lesions of the brain when compared to treatments using multiple static fields or standard SRS arc techniques with circular collimators. For all cases, the IMSRS plan yielded a smaller volume of normal tissue irradiated, and/or a reduction in the volume of an adjacent critical organ (i.e., brainstem) irradiated to significant dose levels.


Practical radiation oncology | 2012

Quality and safety considerations in stereotactic radiosurgery and stereotactic body radiation therapy: Executive summary

Timothy D. Solberg; James M. Balter; Stanley H. Benedict; Benedick A. Fraass; Brian D. Kavanagh; Curtis Miyamoto; Todd Pawlicki; Louis Potters; Yoshiya Yamada

In summary, SRS and SBRT require a team-based approach, staffed by appropriately trained and credentialed specialists. SRS and SBRT training should become a required part of radiation oncology residency training and of Accreditation of Medical Physics Educational Programs accredited clinical medical physics training. SRS and SBRT require significant resources in personnel, specialized technology, and implementation time. A thorough feasibility analysis of resources required to achieve the clinical and technical goals must be performed and discussed with all personnel, including medical center administration. Because various disease sites may have different clinical and technical requirements, feasibility and planning discussions are needed prior to undertaking new disease sites. Treatment of SRS/SBRT patients should adhere to established national guidelines. Acceptance and commissioning protocols and tests must be developed to explore in detail every aspect of the individual and integrated systems with the goal of ensuring safe and effective operation. A comprehensive quality assurance program, encompassing all clinical, technical, and patient-specific treatment aspects, must be developed to ensure SRS and SBRT are performed in a safe and effective manner. Patient safety in radiation therapy is everyones responsibility. Professional organizations, regulators, vendors, and end-users must demonstrate a clear commitment to working closely together to ensure the highest levels of safety and efficacy in stereotactic radiosurgery and stereotactic body radiation therapy.


International Journal of Radiation Oncology Biology Physics | 2000

Hypofractionated stereotactic radiotherapy as an alternative to radiosurgery for the treatment of patients with brain metastases

Matthew A Manning; Robert M Cardinale; Stanley H. Benedict; Brian D. Kavanagh; Robert D. Zwicker; Cyrus Amir; William C. Broaddus

PURPOSE Modeling studies have demonstrated a potential biologic advantage of fractionated stereotactic radiotherapy for malignant brain tumors as compared to radiosurgery (SRS), even when only a few fractions are utilized. We prospectively evaluated the feasibility, toxicity, efficacy and cost of hypofractionated stereotactic radiotherapy (HSRT) in the treatment of selected radiosurgery-eligible patients with brain metastases. METHODS AND MATERIALS Patients with a limited number of brain metastases not involving the brainstem or optic chiasm underwent linac-based HSRT delivered in 3 fractions using a relocatable stereotactic frame. Depth-helmet and reference point measurements were recorded to address treatment accuracy. All patients underwent whole brain radiotherapy to a dose of 30 Gy. Toxicity, response, and survival duration were recorded for each patient. Prognostic factors were assessed by Cox regression analysis. Cost comparisons with a cohort of SRS treated patients were performed. RESULTS Thirty-two patients with 57 brain metastases were treated with HSRT. Twenty-three and 9 patients underwent HSRT for upfront and salvage treatment, respectively. The median dose delivered was 27 Gy, given in 3 fractions of 9 Gy. From 3328 depth-helmet measurements, the absolute median setup deviation in AP, lateral, and vertical orientations was approximately 1.0 mm. No significant acute toxicity was seen. Late toxicities included seizures in four patients, and radionecrosis in two patients. The median survival duration from treatment was 12 months. KPS (p = 0.039) and RTOG-RPA class (p = 0.039) were identified as significant prognostic factors for survival. HSRT was


Medical Physics | 2005

Intracranial stereotactic positioning systems: Report of the American Association of Physicists in Medicine Radiation Therapy Committee Task Group No. 68

A. W. Lightstone; Stanley H. Benedict; Frank J. Bova; Timothy D. Solberg; Robin L. Stern

4119 less costly than SRS. CONCLUSION HSRT, as delivered in this study, is more comfortable for patients and less costly than SRS in the treatment of selected patients with brain metastases. Proper dose selection and radiobiologic/toxicity trade-offs with SRS await further study.


International Journal of Radiation Oncology Biology Physics | 1997

The biological effectiveness of intermittent irradiation as a function of overall treatment time: Development of correction factors for linac-based stereotactic radiotherapy

Stanley H. Benedict; Peck Sun Lin; Robert D. Zwicker; David T. Huang; Rupert Schmidt-Ullrich

Intracranial stereotactic positioning systems (ISPSs) are used to position patients prior to precise radiation treatment of localized lesions of the brain. Often, the lesion is located in close proximity to critical anatomic features whose functions should be maintained. Many types of ISPSs have been described in the literature and are commercially available. These are briefly reviewed. ISPS systems provide two critical functions. The first is to establish a coordinate system upon which a guided therapy can be applied. The second is to provide a method to reapply the coordinate system to the patient such that the coordinates assigned to the patients anatomy are identical from application to application. Without limiting this study to any particular approach to ISPSs, this report introduces nomenclature and suggests performance tests to quantify both the stability of the ISPS to map diagnostic data to a coordinate system, as well as the ISPSs ability to be realigned to the patients anatomy. For users who desire to develop a new ISPS system, it may be necessary for the clinical team to establish the accuracy and precision of each of these functions. For commercially available systems that have demonstrated an acceptable level of accuracy and precision, the clinical team may need to demonstrate local ability to apply the system in a manner consistent with that employed during the published testing. The level of accuracy and precision required of an individual ISPS system is dependent upon the clinical protocol (e.g., fractionation, margin, pathology, etc.). Each clinical team should provide routine quality assurance procedures that are sufficient to support the assumptions of accuracy and precision used during the planning process. The testing of ISPS systems can be grouped into two broad categories, type testing, which occurs prior to general commercialization, and site testing, performed when a commercial system is installed at a clinic. Guidelines to help select the appropriate tests as well as recommendations to help establish the required frequency of testing are provided. Because of the broad scope of different systems, it is important that both the manufacturer and user rigorously critique the system and set QA tests appropriate to the particular device and its possible weaknesses. Major recommendations of the Task Group include: introduction of a new nomenclature for reporting repositioning accuracy; comprehensive analysis of patient characteristics that might adversely affect positioning accuracy; performance of testing immediately before each treatment to establish that there are no gross positioning errors; a general request to the Medical Physics community for improved QA tools; implementation of weekly portal imaging (perhaps cone beam CT in the future) as a method of tracking fractionated patients (as per TG 40); and periodic routine reviews of positioning accuracy.


Medical Physics | 2005

Intracranial stereotactic positioning systems

A. W. Lightstone; Stanley H. Benedict; Frank J. Bova; Timothy D. Solberg; Robin L. Stern

PURPOSE Continuous irradiation of relatively short duration as administered in gamma-ray stereotactic radiosurgery (SRS) is biologically not equivalent to the more protracted intermittent exposures during accelerator-based radiosurgery with multiple arcs. Accelerator-based SRS and fractionated stereotactic radiotherapy (SRT) is currently performed with a high degree of variability in equipment and techniques resulting in highly variable treatment delivery times. The present work is designed to quantify the effects of radiation delivery times on biological effectiveness. For this, the intermittent radiation delivery schemes, typical for linac-based SRS/SRT, have been simulated in vitro to derive biological correction factors. METHODS AND MATERIALS The experiments were carried out using U-87MG human glioma cells in suspension at 37 degrees C irradiated with 6 MV X-rays to clinically relevant doses ranging from 6 to 18 Gy, delivered over total irradiation times from 16 min to 3 h. The resulting cell survival data was used to calculate dose correction factors to compensate for wide variations in dose delivery times. RESULTS At each total dose level, cell survival increased with increasing total irradiation time. The increase in survival was more pronounced at higher dose levels. At a total dose of 12 Gy, cell survival increased by a factor of 4.7 when irradiation time was increased from 16 to 112 min. Dose correction factors were calculated to allow biologically equivalent irradiations over the range of exposure times. Cells irradiated with corrected total doses of 11.5 Gy delivered incrementally in 16 min up to 13.3 Gy in 112 min were found to exhibit the same survival within the experimental limits of accuracy. CONCLUSIONS For a given total dose, variations in dose delivery time typical of SRS/SRT techniques will result in significant changes in cell survival. In the dose range studied, an isoeffect dose correction factor of 2 to 3 cGy/min was shown to compensate for the change in delivery time for U-87 MG human gloma cells in vitro.


Medical Physics | 2013

MR‐guided focused ultrasound surgery, present and future

David Schlesinger; Stanley H. Benedict; Chris J. Diederich; Wladyslaw Gedroyc; Alexander L. Klibanov; James M. Larner

Intracranial stereotactic positioning systems (ISPSs) are used to position patients prior to precise radiation treatment of localized lesions of the brain. Often, the lesion is located in close proximity to critical anatomic features whose functions should be maintained. Many types of ISPSs have been described in the literature and are commercially available. These are briefly reviewed. ISPS systems provide two critical functions. The first is to establish a coordinate system upon which a guided therapy can be applied. The second is to provide a method to reapply the coordinate system to the patient such that the coordinates assigned to the patients anatomy are identical from application to application. Without limiting this study to any particular approach to ISPSs, this report introduces nomenclature and suggests performance tests to quantify both the stability of the ISPS to map diagnostic data to a coordinate system, as well as the ISPSs ability to be realigned to the patients anatomy. For users who desire to develop a new ISPS system, it may be necessary for the clinical team to establish the accuracy and precision of each of these functions. For commercially available systems that have demonstrated an acceptable level of accuracy and precision, the clinical team may need to demonstrate local ability to apply the system in a manner consistent with that employed during the published testing. The level of accuracy and precision required of an individual ISPS system is dependent upon the clinical protocol (e.g., fractionation, margin, pathology, etc.). Each clinical team should provide routine quality assurance procedures that are sufficient to support the assumptions of accuracy and precision used during the planning process. The testing of ISPS systems can be grouped into two broad categories, type testing, which occurs prior to general commercialization, and site testing, performed when a commercial system is installed at a clinic. Guidelines to help select the appropriate tests as well as recommendations to help establish the required frequency of testing are provided. Because of the broad scope of different systems, it is important that both the manufacturer and user rigorously critique the system and set QA tests appropriate to the particular device and its possible weaknesses. Major recommendations of the Task Group include: introduction of a new nomenclature for reporting repositioning accuracy; comprehensive analysis of patient characteristics that might adversely affect positioning accuracy; performance of testing immediately before each treatment to establish that there are no gross positioning errors; a general request to the Medical Physics community for improved QA tools; implementation of weekly portal imaging (perhaps cone beam CT in the future) as a method of tracking fractionated patients (as per TG 40); and periodic routine reviews of positioning accuracy.

Collaboration


Dive into the Stanley H. Benedict's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ke Sheng

University of California

View shared research outputs
Top Co-Authors

Avatar

Brian D. Kavanagh

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jyoti Mayadev

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William C. Broaddus

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge