Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stanley N. Johnson is active.

Publication


Featured researches published by Stanley N. Johnson.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Nonequilibrium atmospheric secondary organic aerosol formation and growth

Véronique Perraud; Emily A. Bruns; Michael J. Ezell; Stanley N. Johnson; Yong Yu; M. Lizabeth Alexander; Alla Zelenyuk; Dan G. Imre; Wayne L. Chang; Donald Dabdub; James F. Pankow; Barbara J. Finlayson-Pitts

Airborne particles play critical roles in air quality, health effects, visibility, and climate. Secondary organic aerosols (SOA) formed from oxidation of organic gases such as α-pinene account for a significant portion of total airborne particle mass. Current atmospheric models typically incorporate the assumption that SOA mass is a liquid into which semivolatile organic compounds undergo instantaneous equilibrium partitioning to grow the particles into the size range important for light scattering and cloud condensation nuclei activity. We report studies of particles from the oxidation of α-pinene by ozone and NO3 radicals at room temperature. SOA is primarily formed from low-volatility ozonolysis products, with a small contribution from higher volatility organic nitrates from the NO3 reaction. Contrary to expectations, the particulate nitrate concentration is not consistent with equilibrium partitioning between the gas phase and a liquid particle. Rather the fraction of organic nitrates in the particles is only explained by irreversible, kinetically determined uptake of the nitrates on existing particles, with an uptake coefficient that is 1.6% of that for the ozonolysis products. If the nonequilibrium particle formation and growth observed in this atmospherically important system is a general phenomenon in the atmosphere, aerosol models may need to be reformulated. The reformulation of aerosol models could impact the predicted evolution of SOA in the atmosphere both outdoors and indoors, its role in heterogeneous chemistry, its projected impacts on air quality, visibility, and climate, and hence the development of reliable control strategies.


Environmental Science & Technology | 2010

Comparison of FTIR and Particle Mass Spectrometry for the Measurement of Particulate Organic Nitrates

Emily A. Bruns; Véronique Perraud; Alla Zelenyuk; Michael J. Ezell; Stanley N. Johnson; Yong Yu; Dan G. Imre; Barbara J. Finlayson-Pitts; M. Lizabeth Alexander

While multifunctional organic nitrates are formed during the atmospheric oxidation of volatile organic compounds, relatively little is known about their signatures in particle mass spectrometers. High resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) and FTIR spectroscopy on particles impacted on ZnSe windows were applied to NH(4)NO(3), NaNO(3), and isosorbide 5-mononitrate (IMN) particles, and to secondary organic aerosol (SOA) from NO(3) radical reactions at 22 degrees C and 1 atm in air with alpha- and beta-pinene, 3-carene, limonene, and isoprene. For comparison, single particle laser ablation mass spectra (SPLAT II) were also obtained for IMN and SOA from the alpha-pinene reaction. The mass spectra of all particles exhibit significant intensity at m/z 30, and for the SOA, weak peaks corresponding to various organic fragments containing nitrogen [C(x)H(y)N(z)O(a)](+) were identified using HR-ToF-AMS. The NO(+)/NO(2)(+) ratios from HR-ToF-AMS were 10-15 for IMN and the SOA from the alpha- and beta-pinene, 3-carene, and limonene reactions, approximately 5 for the isoprene reaction, 2.4 for NH(4)NO(3) and 80 for NaNO(3). The N/H ratios from HR-ToF-AMS for the SOA were smaller by a factor of 2 to 4 than the -ONO(2)/C-H ratios measured using FTIR. FTIR has the advantage that it provides identification and quantification of functional groups. The NO(+)/NO(2)(+) ratio from HR-ToF-AMS can indicate organic nitrates if they are present at more than 15-60% of the inorganic nitrate, depending on whether the latter is NH(4)NO(3) or NaNO(3). However, unique identification of specific organic nitrates is not possible with either method.


Environmental Science & Technology | 2010

Identification of Organic Nitrates in the NO3 Radical Initiated Oxidation of α-Pinene by Atmospheric Pressure Chemical Ionization Mass Spectrometry

Véronique Perraud; Emily A. Bruns; Michael J. Ezell; Stanley N. Johnson; John Greaves; Barbara J. Finlayson-Pitts

The gas-phase reactions of nitrate radicals (NO3) with biogenic organic compounds are a major sink for these organics during night-time. These reactions form secondary organic aerosols, including organic nitrates that can undergo long-range transport, releasing NOx downwind. We report here studies of the reaction of NO3 with alpha-pinene at 1 atm in dry synthetic air (relative humidity approximately 3%) and at 298 K using atmospheric pressure chemical ionization triple quadrupole mass spectrometry (APCI-MS) to identify gaseous and particulate products. The emphasis is on the identification of individual organic nitrates in the particle phase that were obtained by passing the product mixture through a denuder to remove gas-phase reactants and products prior to entering the source region of the mass spectrometer. Filter extracts were also analyzed by GC-MS and by APCI time-of-flight mass spectrometry (APCI-ToF-MS) with methanol as the proton source. In addition to pinonaldehyde and pinonic acid, five organic nitrates were identified in the particles as well as in the gas phase: 3-oxopinane-2-nitrate, 2-hydroxypinane-3-nitrate, pinonaldehyde-PAN, norpinonaldehyde-PAN, and (3-acetyl-2,2-dimethyl-3-nitrooxycyclobutyl)acetaldehyde. Furthermore, there was an additional first-generation organic nitrate product tentatively identified as a carbonyl hydroxynitrate with a molecular mass of 229. These studies suggest that a variety of organic nitrates would partition between the gas phase and particles in the atmosphere, and serve as a reservoir for NOx.


Physical Chemistry Chemical Physics | 2008

Enhanced surface photochemistry in chloride–nitrate ion mixtures

Lisa M. Wingen; Amy C. Moskun; Stanley N. Johnson; Jennie L. Thomas; Martina Roeselová; Douglas J. Tobias; Michael T. Kleinman; Barbara J. Finlayson-Pitts

Heterogeneous reactions of sea salt aerosol with various oxides of nitrogen lead to replacement of chloride ion by nitrate ion. Studies of the photochemistry of a model system were carried out using deliquesced mixtures of NaCl and NaNO3 on a Teflon substrate. Varying molar ratios of NaCl to NaNO3 (1 : 9 Cl- : NO3-, 1 : 1 Cl- : NO3-, 3 : 1 Cl- : NO3-, 9 : 1 Cl- : NO3-) and NaNO3 at the same total concentration were irradiated in air at 299 +/- 3 K and at a relative humidity of 75 +/- 8% using broadband UVB light (270-380 nm). Gaseous NO2 production was measured as a function of time using a chemiluminescence NO(y) detector. Surprisingly, an enhanced yield of NO2 was observed as the chloride to nitrate ratio increased. Molecular dynamics (MD) simulations show that as the Cl- : NO3- ratio increases, the nitrate ions are drawn closer to the interface due to the existence of a double layer of interfacial Cl- and subsurface Na+. This leads to a decreased solvent cage effect when the nitrate ion photodissociates to NO2+O*-, increasing the effective quantum yield and hence the production of gaseous NO2. The implications of enhanced NO2 and likely OH production as sea salt aerosols become processed in the atmosphere are discussed.


Aerosol Science and Technology | 2010

A New Aerosol Flow System for Photochemical and Thermal Studies of Tropospheric Aerosols

Michael J. Ezell; Stanley N. Johnson; Yong Yu; Véronique Perraud; Emily A. Bruns; M. Lizabeth Alexander; Alla Zelenyuk; Donald Dabdub; Barbara J. Finlayson-Pitts

For studying the formation and photochemical/thermal reactions of aerosols relevant to the troposphere, a unique, high-volume, slow-flow, stainless steel aerosol flow system equipped with UV lamps has been constructed and characterized experimentally. The total flow system length is 8.5 m and includes a 1.2 m section used for mixing, a 6.1 m reaction section and a 1.2 m transition cone at the end. The 45.7 cm diameter results in a smaller surface to volume ratio than is found in many other flow systems and thus reduces the potential contribution from wall reactions. The latter are also reduced by frequent cleaning of the flow tube walls which is made feasible by the ease of disassembly. The flow tube is equipped with ultraviolet lamps for photolysis. This flow system allows continuous sampling under stable conditions, thus increasing the amount of sample available for analysis and permitting a wide variety of analytical techniques to be applied simultaneously. The residence time is of the order of an hour, and sampling ports located along the length of the flow tube allow for time-resolved measurements of aerosol and gas-phase products. The system was characterized using both an “inert” gas (CO 2 ) and particles (atomized NaNO 3 ). Instruments interfaced directly to this flow system include a NO x analyzer, an ozone analyzer, relative humidity and temperature probes, a scanning mobility particle sizer spectrometer, an aerodynamic particle sizer spectrometer, a gas chromatograph-mass spectrometer, an integrating nephelometer, and a Fourier transform infrared spectrophotometer equipped with a long path (64 m) cell. Particles collected with impactors and filters at the various sampling ports can be analyzed subsequently by a variety of techniques. Formation of secondary organic aerosol from α-pinene reactions (NO x photooxidation and ozonolysis) are used to demonstrate the capabilities of this new system.


Environmental Science & Technology | 2011

Surprising formation of p-cymene in the oxidation of α-pinene in air by the atmospheric oxidants OH, O3, and NO3.

Aline Gratien; Stanley N. Johnson; Michael J. Ezell; Matthew L. Dawson; Raffeal Bennett; Barbara J. Finlayson-Pitts

Anthropogenic sources release into the troposphere a wide range of volatile organic compounds (VOCs) including aromatic hydrocarbons, whose major sources are believed to be combustion and the evaporation of fossil fuels. An important question is whether there are other sources of aromatics in air. We report here the formation of p-cymene [1-methyl-4-(1-methylethyl) benzene, C6H4(CH3)(C3H7)] from the oxidation of α-pinene by OH, O3, and NO3 at 1 atm in air and 298 K at low (<5%) and high (70%) relative humidities (RH). Loss of α-pinene and the generation of p-cymene were measured using GC-MS. The fractional yields of p-cymene relative to the loss of α-pinene, Δ [p-cymeme]/Δ [α-pinene], were measured to range from (1.6±0.2)×10(-5) for the O3 reaction to (3.0±0.3)×10(-4) for the NO3 reaction in the absence of added water vapor. The yields for the OH and O3 reactions increased by a factor of 4-8 at 70% RH (uncertainties are ±2s). The highest yields at 70% RH for the OH and O3 reactions, ∼15 times higher than for dry conditions, were observed if the walls of the Teflon reaction chamber had been previously exposed to H2SO4 formed from the OH oxidation of SO2. Possible mechanisms of the conversion of α-pinene to p-cymene and the potential importance in the atmosphere are discussed.


Inhalation Toxicology | 1998

Thermal decomposition of phospholipid secondary ozonides: Implications for the toxicity of inhaled ozone

Barbara J. Finlayson-Pitts; T. T. H. Pham; C. C. Lai; Stanley N. Johnson; L. L. Lucio-Gough; J. Mestas; D. Iwig

While inhalation of ozone is known to cause a variety of health effects, the reactions at a molecular level that lead to these effects are not well understood. One potential path is the reaction of ozone with the unsaturated fatty acid components of pulmonary surfactant at the air-water interface in the lung to form secondary ozonides. These have been proposed to decompose to free radicals, which can then initiate the well-known inflammatory response. We report here the first kinetic studies of the thermal decomposition of the cis and trans secondary ozonides of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a phospholipid found in significant quantities in lung surfactant. The ozonides were synthesized by reaction of O3 with POPC adsorbed on a glass surface, and their thermal decomposition kinetics were followed using high-performance liquid chromatography (HPLC) over the temperature range from 50°C to 106°C in either methanol or 1,1,1,2-tetrachloroethane. The Arrhenius parameters for the thermal decomposition in methanol are A = 10(6.7±0.3) s-1 and E(a) = 19.6 ± 0.6 kcal mol-1 for the cis ozonide, and A = 10(8.7±0.6) s-1 and E(a) = 19.8 ± 1.0 kcal mol-1 for the trans ozonide. In 1,1,1,2-tetrachloroethane, the parameters are A = 10(8.3±2.1) s-1 and E(a) = 18.4 ± 3.4 kcal mol-1 for the cis ozonide, and A = 10(9.3±3.2) s-1 and E(a) = 20.2 ± 5.2 kcal mol-1 for the trans ozonide (all errors cited are ±2σ). Within experimental error, there is no difference in the kinetics of decomposition in the two solvents. However, both the activation energy and the preexponential factor for the decomposition of the phospholipid ozonides are significantly lower than those for decomposition of the long-chain alkene ozonide 1-octene ozonide, determined to be E(a) = 26.7 ± 3.2 kcal mol-1 and A = 10(12.7±1.9) s-1. The latter reaction has been proposed to be initiated by scission of the O-O bond, followed by decomposition of the peroxy biradical to generate free radicals. The kinetics for the decomposition of the POPC ozonides in solution are similar to those of simple alkene ozonides in the gas phase, where a concerted mechanism involving simultaneous intramolecular hydrogen transfer and O-O bond cleavage has been proposed. The only high-molecular-weight major product of the POPC ozonide decomposition identified using liquid secondary ion mass spectrometry (LSIMS) was the lipid acid 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine, which was observed as a product in both solvents. The mechanism and implications for the toxicology of inhaled ozone are discussed.


Atmospheric Environment | 2008

Photooxidation of α-pinene at high relative humidity in the presence of increasing concentrations of NOx

Yong Yu; Michael J. Ezell; Alla Zelenyuk; Dan G. Imre; Liz Alexander; John V. Ortega; Barbara D’Anna; Christopher W. Harmon; Stanley N. Johnson; Barbara J. Finlayson-Pitts


Atmospheric Environment | 2010

Characterization of organic coatings on hygroscopic salt particles and their atmospheric impacts

Alla Zelenyuk; Michael J. Ezell; Véronique Perraud; Stanley N. Johnson; Emily A. Bruns; Yong Yu; Dan G. Imre; M. Liz Alexander; Barbara J. Finlayson-Pitts


Atmospheric Environment | 2009

Contamination from electrically conductive silicone tubing during aerosol chemical analysis

Yong Yu; M. Liz Alexander; Véronique Perraud; Emily A. Bruns; Stanley N. Johnson; Michael J. Ezell; Barbara J. Finlayson-Pitts

Collaboration


Dive into the Stanley N. Johnson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Yu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alla Zelenyuk

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dan G. Imre

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. Lizabeth Alexander

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Donald Dabdub

University of California

View shared research outputs
Top Co-Authors

Avatar

Lisa M. Wingen

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge