Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stanley Tabor is active.

Publication


Featured researches published by Stanley Tabor.


Nature | 1998

Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution.

Sylvie Doublié; Stanley Tabor; Alexander M. Long; Charles C. Richardson; Tom Ellenberger

DNA polymerases change their specificity for nucleotide substrates with each catalytic cycle, while achieving error frequencies in the range of 10 −5to 10−6. Here we present a 2.2 Å crystal structure of the replicative DNA polymerase from bacteriophage T7 complexed with a primer–template and a nucleoside triphosphate in the polymerase active site. The structure illustrates how nucleotides are selected in a template-directed manner, and provides a structural basis for a metal-assisted mechanism of phosphoryl transfer by a large group of related polymerases.


Cell | 1999

Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7.

Michael R Sawaya; Shenyuan Guo; Stanley Tabor; Charles C. Richardson; Tom Ellenberger

Helicases that unwind DNA at the replication fork are ring-shaped oligomeric enzymes that move along one strand of a DNA duplex and catalyze the displacement of the complementary strand in a reaction that is coupled to nucleotide hydrolysis. The helicase domain of the replicative helicase-primase protein from bacteriophage T7 crystallized as a helical filament that resembles the Escherichia coli RecA protein, an ATP-dependent DNA strand exchange factor. When viewed in projection along the helical axis of the crystals, six protomers of the T7 helicase domain resemble the hexameric rings seen in electron microscopic images of the intact T7 helicase-primase. Nucleotides bind at the interface between pairs of adjacent subunits where an arginine is near the gamma-phosphate of the nucleotide in trans. The bound nucleotide stabilizes the folded conformation of a DNA-binding motif located near the center of the ring. These and other observations suggest how conformational changes are coupled to DNA unwinding activity.


Current protocols in molecular biology | 2001

Expression using the T7 RNA polymerase/promoter system.

Stanley Tabor

This unit describes the expression of genes by placing them under the control of the bacteriophage T7 RNA polymerase. T7 RNA polymerase is a very active enzyme: it synthesizes RNA at a rate several times that of E. coli RNA polymerase and it terminates transcription less frequently; in fact, its transcription can circumnavigate a plasmid, resulting in RNA several times the plasmid length in size. T7 RNA polymerase is also highly selective for initiation at its own promoter sequences and is resistant to antibiotics such as rifampicin that inhibit E. coli RNA polymerase. Consequently, the addition of rifampicin to cells that are producing T7 RNA polymerase results in the exclusive expression of genes under the control of a T7 RNA polymerase promoter (pT7). In the , two plasmids are maintained within the same E. coli cell. One (the expression vector) contains pT7 upstream of the gene to be expressed. The second contains the T7 RNA polymerase gene under the control of a heat‐inducible E. coli promoter. Upon heat induction, the T7 RNA polymerase is produced and initiates transcription on the expression vector, resulting in turn in the expression of the gene(s) under the control of pT7. If desired, the gene products can be uniquely labeled by carrying out the procedure in minimal medium, adding rifampicin to inhibit the E. coli RNA polymerase, and then labeling the proteins with [35S]methionine.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage

Udi Qimron; Boriana Marintcheva; Stanley Tabor; Charles C. Richardson

Use of bacteriophages as a therapy for bacterial infection has been attempted over the last century. Such an endeavor requires the elucidation of basic aspects of the host–virus interactions and the resistance mechanisms of the host. Two recently developed bacterial collections now enable a genomewide search of the genetic interactions between Escherichia coli and bacteriophages. We have screened >85% of the E. coli genes for their ability to inhibit growth of T7 phage and >90% of the host genes for their ability to be used by the virus. In addition to identifying all of the known interactions, several other interactions have been identified. E. coli CMP kinase is essential for T7 growth, whereas overexpression of the E. coli uridine/cytidine kinase inhibits T7 growth. Mutations in any one of nine genes that encode enzymes for the synthesis of the E. coli lipopolysaccharide receptor for T7 adsorption leads to T7 resistance. Selection of T7 phage that can recognize these altered receptors has enabled the construction of phage to which the host is 100-fold less resistant.


Cell | 1987

Distinguishing between mechanisms of eukaryotic transcriptional activation with bacteriophage T7 RNA polymerase

Wei Chen; Stanley Tabor; Kevin Struhl

To distinguish between mechanisms of eukaryotic transcriptional activation, we tested whether yeast upstream promoter elements can stimulate transcription by a heterologous transcription machinery, bacteriophage T7 RNA polymerase. The gal enhancer-like element recognized by GAL4 protein or the ded1 poly(dA-dT) element was placed upstream of the T7 promoter and his3 structural gene, and T7 RNA polymerase was produced in yeast cells. Under conditions where the gal element would normally be either activating or nonactivating, his3 transcription by T7 RNA polymerase was not stimulated above the level observed in the absence of any upstream element. In contrast, the ded1 poly(dA-dT) element stimulated transcription 7-fold, similar to the enhancement observed on the native ded1 promoter. Activation by the ded1 element thus may involve effects on the chromatin template that facilitate entry of the transcription machinery, whereas activation by the gal element may involve specific contacts between GAL4 and the transcriptional machinery.


Journal of Biological Chemistry | 1999

The linker region between the helicase and primase domains of the bacteriophage T7 gene 4 protein is critical for hexamer formation.

Shenyuan Guo; Stanley Tabor; Charles C. Richardson

The gene 4 protein of bacteriophage T7, a functional hexamer, comprises DNA helicase and primase activities. Both activities depend on the unidirectional movement of the protein along single-stranded DNA in a reaction coupled to the hydrolysis of dTTP. We have characterized dTTPase activity and hexamer formation for the full-length gene 4 protein (gp4) as well as for three carboxyl-terminal fragments starting at residues 219 (gp4-C219), 241 (gp4-C241), and 272 (gp4-C272). The region between residues 242 and 271, residing between the primase and helicase domains, is critical for oligomerization of the gene 4 protein. A functional TPase active site is dependent on oligomerization. During native gel electrophoresis, gp4, gp4-C219, and gp4-C241 migrate as oligomers, whereas gp4-C272 is monomeric. The steady-state k cat for dTTPase activity of gp4-C272 increases sharply with protein concentration, indicating that it forms oligomers only at high concentrations. gp4-C219 and gp4-C241 both form a stable complex with gp4, whereas gp4-C272 interacts only weakly with gp4. Measurements of surface plasmon resonance indicate that a monomer of T7 DNA polymerase binds to a dimer of gp4, gp4-C219, or gp4-C241 but to a monomer of gp4-C272. Like the homologous RecA and F1-ATPase proteins, the oligomerization domain of the gene 4 protein is adjacent to the amino terminus of the NTP-binding domain.


Cell | 1994

Coordination of leading and lagging strand DNA synthesis at the replication fork of bacteriophage T7

Zeger Debyser; Stanley Tabor; Charles C. Richardson

We have used the T7 DNA replication system to examine coordination of leading and lagging strand synthesis at a replication fork. The 63 kd gene 4 protein provides both helicase and primase activities; we demonstrate that primer synthesis inhibits helicase activity on a synthetic replication fork. Lagging strand DNA synthesis by a complex of gene 4 protein and T7 DNA polymerase decreases the rate of leading strand synthesis. Both leading and lagging strand synthesis are resistant to dilution of the replication proteins, and to challenge with heparin. Furthermore, dilution does not increase the average length of Okazaki fragments. We propose that leading and lagging strand synthesis at a T7 replication fork are coupled and that the replication proteins are recycled.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Conformational dynamics of bacteriophage T7 DNA polymerase and its processivity factor, Escherichia coli thioredoxin

Barak Akabayov; Sabine R. Akabayov; Seung-Joo Lee; Stanley Tabor; Arkadiusz W. Kulczyk; Charles C. Richardson

Gene 5 of bacteriophage T7 encodes a DNA polymerase (gp5) responsible for the replication of the phage DNA. Gp5 polymerizes nucleotides with low processivity, dissociating after the incorporation of 1 to 50 nucleotides. Thioredoxin (trx) of Escherichia coli binds tightly (Kd = 5 nM) to a unique segment in the thumb subdomain of gp5 and increases processivity. We have probed the molecular basis for the increase in processivity. A single-molecule experiment reveals differences in rates of enzymatic activity and processivity between gp5 and gp5/trx. Small angle X-ray scattering studies combined with nuclease footprinting reveal two conformations of gp5, one in the free state and one upon binding to trx. Comparative analysis of the DNA binding clefts of DNA polymerases and DNA binding proteins show that the binding surface contains more hydrophobic residues than other DNA binding proteins. The balanced composition between hydrophobic and charged residues of the binding site allows for efficient sliding of gp5/trx on the DNA. We propose a model for trx-induced conformational changes in gp5 that enhance the processivity by increasing the interaction of gp5 with DNA.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Helicase-DNA polymerase interaction is critical to initiate leading-strand DNA synthesis

H. Zhang; Seung-Joo Lee; Bin Zhu; Ngoc Q. Tran; Stanley Tabor; Charles C. Richardson

Interactions between gene 4 helicase and gene 5 DNA polymerase (gp5) are crucial for leading-strand DNA synthesis mediated by the replisome of bacteriophage T7. Interactions between the two proteins that assure high processivity are known but the interactions essential to initiate the leading-strand DNA synthesis remain unidentified. Replacement of solution-exposed basic residues (K587, K589, R590, and R591) located on the front surface of gp5 with neutral asparagines abolishes the ability of gp5 and the helicase to mediate strand-displacement synthesis. This front basic patch in gp5 contributes to physical interactions with the acidic C-terminal tail of the helicase. Nonetheless, the altered polymerase is able to replace gp5 and continue ongoing strand-displacement synthesis. The results suggest that the interaction between the C-terminal tail of the helicase and the basic patch of gp5 is critical for initiation of strand-displacement synthesis. Multiple interactions of T7 DNA polymerase and helicase coordinate replisome movement.


Journal of Biological Chemistry | 2004

The highly processive DNA polymerase of bacteriophage T5: Role of the unique N and C termini

Nathalie Andraos; Stanley Tabor; Charles C. Richardson

The DNA polymerase encoded by bacteriophage T5 has been reported previously to be processive and to catalyze extensive strand displacement synthesis. The enzyme, purified from phage-infected cells, did not require accessory proteins for these activities. Although T5 DNA polymerase shares extensive sequence homology with Escherichia coli DNA polymerase I and T7 DNA polymerase, it contains unique regions of 130 and 71 residues at its N and C termini, respectively. We cloned the gene encoding wild-type T5 DNA polymerase and characterized the overproduced protein. We also examined the effect of N- and C-terminal deletions on processivity and strand displacement synthesis. T5 DNA polymerase lacking its N-terminal 30 residues resembled the wild-type enzyme albeit with a 2-fold reduction in polymerase activity. Deletion of 24 residues at the C terminus resulted in a 30-fold reduction in polymerase activity on primed circular DNA, had dramatically reduced processivity, and was unable to carry out strand displacement synthesis. Deletion of 63 residues at the C terminus resulted in a 20,000-fold reduction in polymerase activity. The 3′ to 5′ double-stranded DNA exonuclease activity associated with T5 DNA polymerase was reduced by a factor of 5 in the polymerase truncated at the N terminus but was stimulated by a factor of 7 in the polymerase truncated at the C terminus. We propose a model in which the C terminus increases the affinity of the DNA for the polymerase active site, thus increasing processivity and decreasing the accessibility of the DNA to the exonuclease active site.

Collaboration


Dive into the Stanley Tabor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge