Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Star Dunham-Ems is active.

Publication


Featured researches published by Star Dunham-Ems.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Phagosomal signaling by Borrelia burgdorferi in human monocytes involves Toll-like receptor (TLR) 2 and TLR8 cooperativity and TLR8-mediated induction of IFN-β

Jorge L. Cervantes; Star Dunham-Ems; Carson J. La Vake; Mary M. Petzke; Bikash Sahay; Timothy J. Sellati; Justin D. Radolf; Juan C. Salazar

Phagocytosed Borrelia burgdorferi (Bb) induces inflammatory signals that differ both quantitatively and qualitatively from those generated by spirochetal lipoproteins interacting with Toll-like receptor (TLR) 1/2 on the surface of human monocytes. Of particular significance, and in contrast to lipoproteins, internalized spirochetes induce transcription of IFN-β. Using inhibitory immunoregulatory DNA sequences (IRSs) specific to TLR7, TLR8, and TLR9, we show that the TLR8 inhibitor IRS957 significantly diminishes production of TNF-α, IL-6, and IL-10 and completely abrogates transcription of IFN-β in Bb-stimulated monocytes. We demonstrate that live Bb induces transcription of TLR2 and TLR8, whereas IRS957 interferes with their transcriptional regulation. Using confocal and epifluorescence microscopy, we show that baseline TLR expression in unstimulated monocytes is greater for TLR2 than for TLR8, whereas expression of both TLRs increases significantly upon stimulation with live spirochetes. By confocal microscopy, we show that TLR2 colocalization with Bb coincides with binding, uptake, and formation of the phagosomal vacuole, whereas recruitment of both TLR2 and TLR8 overlaps with degradation of the spirochete. We provide evidence that IFN regulatory factor (IRF) 7 is translocated into the nucleus of Bb-infected monocytes, suggesting its activation through phosphorylation. Taken together, these findings indicate that the phagosome is an efficient platform for the recognition of diverse ligands; in the case of Bb, phagosomal signaling involves a cooperative interaction between TLR2 and TLR8 in pro- and antiinflammatory cytokine responses, whereas TLR8 is solely responsible for IRF7-mediated induction of IFN-β.


Infection and Immunity | 2010

Surface Immunolabeling and Consensus Computational Framework To Identify Candidate Rare Outer Membrane Proteins of Treponema pallidum

David L. Cox; Amit Luthra; Star Dunham-Ems; Daniel C. Desrosiers; Juan C. Salazar; Melissa J. Caimano; Justin D. Radolf

ABSTRACT Treponema pallidum reacts poorly with the antibodies present in rabbit and human syphilitic sera, a property attributed to the paucity of proteins in its outer membrane. To better understand the basis for the syphilis spirochetes “stealth pathogenicity,” we used a dual-label, 3-step amplified assay in which treponemes encapsulated in gel microdroplets were probed with syphilitic sera in parallel with anti-FlaA antibodies. A small (approximately 5 to 10%) but reproducible fraction of intact treponemes bound IgG and/or IgM antibodies. Three lines of evidence supported the notion that the surface antigens were likely β-barrel-forming outer membrane proteins (OMPs): (i) surface labeling with anti-lipoidal (VDRL) antibodies was not observed, (ii) immunoblot analysis confirmed prior results showing that T. pallidum glycolipids are not immunoreactive, and (iii) labeling of intact organisms was not appreciably affected by proteinase K (PK) treatment. With this method, we also demonstrate that TprK (TP0897), an extensively studied candidate OMP, and TP0136, a lipoprotein recently reported to be surface exposed, are both periplasmic. Consistent with the immunolabeling studies, TprK was also found to lack amphiphilicity, a characteristic property of β-barrel-forming proteins. Using a consensus computational framework that combined subcellular localization and β-barrel structural prediction tools, we generated ranked groups of candidate rare OMPs, the predicted T. pallidum outer membrane proteome (OMPeome), which we postulate includes the surface-exposed molecules detected by our enhanced gel microdroplet assay. In addition to underscoring the syphilis spirochetes remarkably poor surface antigenicity, our findings help to explain the complex and shifting balance between pathogen and host defenses that characterizes syphilitic infection.


PLOS Pathogens | 2012

Borrelia burgdorferi requires the alternative sigma factor RpoS for dissemination within the vector during tick-to-mammal transmission.

Star Dunham-Ems; Melissa J. Caimano; Christian H. Eggers; Justin D. Radolf

While the roles of rpoSBb and RpoS-dependent genes have been studied extensively within the mammal, the contribution of the RpoS regulon to the tick-phase of the Borrelia burgdorferi enzootic cycle has not been examined. Herein, we demonstrate that RpoS-dependent gene expression is prerequisite for the transmission of spirochetes by feeding nymphs. RpoS-deficient organisms are confined to the midgut lumen where they transform into an unusual morphotype (round bodies) during the later stages of the blood meal. We show that round body formation is rapidly reversible, and in vitro appears to be attributable, in part, to reduced levels of Coenzyme A disulfide reductase, which among other functions, provides NAD+ for glycolysis. Our data suggest that spirochetes default to an RpoS-independent program for round body formation upon sensing that the energetics for transmission are unfavorable.


Infection and Immunity | 2011

The Hybrid Histidine Kinase Hk1 Is Part of a Two-Component System That Is Essential for Survival of Borrelia burgdorferi in Feeding Ixodes scapularis Ticks

Melissa J. Caimano; Melisha R. Kenedy; Toru Kairu; Daniel C. Desrosiers; Michael W. Harman; Star Dunham-Ems; Darrin R. Akins; Utpal Pal; Justin D. Radolf

ABSTRACT Two-component systems (TCS) are principal mechanisms by which bacteria adapt to their surroundings. Borrelia burgdorferi encodes only two TCS. One is comprised of a histidine kinase, Hk2, and the response regulator Rrp2. While the contribution of Hk2 remains unclear, Rrp2 is part of a regulatory pathway involving the spirochetes alternate sigma factors, RpoN and RpoS. Genes within the Rrp2/RpoN/RpoS regulon function to promote tick transmission and early infection. The other TCS consists of a hybrid histidine kinase, Hk1, and the response regulator Rrp1. Hk1 is composed of two periplasmic sensor domains (D1 and D2), followed by conserved cytoplasmic histidine kinase core, REC, and Hpt domains. In addition to its REC domain, Rrp1 contains a GGDEF motif characteristic of diguanylate cyclases. To investigate the role of Hk1 during the enzootic cycle, we inactivated this gene in two virulent backgrounds. Extensive characterization of the resulting mutants revealed a dramatic phenotype whereby Hk1-deficient spirochetes are virulent in mice and able to migrate out of the bite site during feeding but are killed within the midgut following acquisition. We hypothesize that the phosphorelay between Hk1 and Rrp1 is initiated by the binding of feeding-specific ligand(s) to Hk1 sensor domain D1 and/or D2. Once activated, Rrp1 directs the synthesis of cyclic dimeric GMP (c-di-GMP), which, in turn, modulates the expression and/or activity of gene products required for survival within feeding ticks. In contrast to the Rrp2/RpoN/RpoS pathway, which is active only within feeding nymphs, the Hk1/Rrp1 TCS is essential for survival during both larval and nymphal blood meals.


Journal of Bacteriology | 2009

Borrelia burgdorferi bba74 is expressed exclusively during tick feeding and is regulated by both arthropod- and mammalian host-specific signals.

Vishwaroop Mulay; Melissa J. Caimano; Radha Iyer; Star Dunham-Ems; Dionysios Liveris; Mary M. Petzke; Ira Schwartz; Justin D. Radolf

Although BBA74 initially was described as a 28-kDa virulence-associated outer-membrane-spanning protein with porin-like function, subsequent studies revealed that it is periplasmic and downregulated in mammalian host-adapted spirochetes. To further elucidate the role of this protein in the Borrelia burgdorferi tick-mammal cycle, we conducted a thorough examination of its expression profile in comparison with the profiles of three well-characterized, differentially expressed borrelial genes (ospA, ospC, and ospE) and their proteins. In vitro, transcripts for bba74 were expressed at 23 degrees C and further enhanced by a temperature shift (37 degrees C), whereas BBA74 protein diminished at elevated temperatures; in contrast, neither transcript nor protein was expressed by spirochetes grown in dialysis membrane chambers (DMCs). Primer extension of wild-type B. burgdorferi grown in vitro, in conjunction with expression analysis of DMC-cultivated wild-type and rpoS mutant spirochetes, revealed that, like ospA, bba74 is transcribed by sigma(70) and is subject to RpoS-mediated repression within the mammalian host. A series of experiments utilizing wild-type and rpoS mutant spirochetes was conducted to determine the transcriptional and translational profiles of bba74 during the tick-mouse cycle. Results from these studies revealed (i) that bba74 is transcribed by sigma(70) exclusively during the larval and nymphal blood meals and (ii) that transcription of bba74 is bracketed by RpoS-independent and -dependent forms of repression that are induced by arthropod- and mammalian host-specific signals, respectively. Although loss of BBA74 does not impair the ability of B. burgdorferi to complete its infectious life cycle, the temporal compartmentalization of this genes transcription suggests that BBA74 facilitates fitness of the spirochete within a narrow window of its tick phase. A reexamination of the paradigm for reciprocal regulation of ospA and ospC, performed herein, revealed that the heterogeneous expression of OspA and OspC displayed by spirochete populations during the nymphal blood meal results from the intricate sequence of transcriptional and translational changes that ensue as B. burgdorferi transitions between its arthropod vector and mammalian host.


Proceedings of the National Academy of Sciences of the United States of America | 2012

The heterogeneous motility of the Lyme disease spirochete in gelatin mimics dissemination through tissue

Michael W. Harman; Star Dunham-Ems; Melissa J. Caimano; Alexia A. Belperron; Linda K. Bockenstedt; Henry Fu; Justin D. Radolf; Charles W. Wolgemuth

The Lyme disease spirochete Borrelia burgdorferi exists in nature in an enzootic cycle that involves the arthropod vector Ixodes scapularis and mammalian reservoirs. To disseminate within and between these hosts, spirochetes must migrate through complex, polymeric environments such as the basement membrane of the tick midgut and the dermis of the mammal. To date, most research on the motility of B. burgdorferi has been done in media that do not resemble the tissue milieus that B. burgdorferi encounter in vivo. Here we show that the motility of Borrelia in gelatin matrices in vitro resembles the pathogens movements in the chronically infected mouse dermis imaged by intravital microscopy. More specifically, B. burgdorferi motility in mouse dermis and gelatin is heterogeneous, with the bacteria transitioning between at least three different motility states that depend on transient adhesions to the matrix. We also show that B. burgdorferi is able to penetrate matrices with pore sizes much smaller than the diameter of the bacterium. We find a complex relationship between the swimming behavior of B. burgdorferi and the rheological properties of the gelatin, which cannot be accounted for by recent theoretical predictions for microorganism swimming in gels. Our results also emphasize the importance of considering borrelial adhesion as a dynamic rather than a static process.


Molecular Microbiology | 2011

TP0326, a Treponema pallidum β-barrel assembly machinery A (BamA) orthologue and rare outer membrane protein.

Daniel C. Desrosiers; Arvind Anand; Amit Luthra; Star Dunham-Ems; Morgan LeDoyt; Michael A. D. Cummings; Azad Eshghi; Adriana R. Cruz; Juan C. Salazar; Melissa J. Caimano; Justin D. Radolf

Definitive identification of Treponema pallidum rare outer membrane proteins (OMPs) has long eluded researchers. TP0326, the sole protein in T. pallidum with sequence homology to a Gram‐negative OMP, belongs to the BamA family of proteins essential for OM biogenesis. Structural modelling predicted that five polypeptide transport‐associated (POTRA) domains comprise the N‐terminus of TP0326, while the C‐terminus forms an 18‐stranded amphipathic β‐barrel. Circular dichroism, heat modifiability by SDS‐PAGE, Triton X‐114 phase partitioning and liposome incorporation supported these topological predictions and confirmed that the β‐barrel is responsible for the native proteins amphiphilicity. Expression analyses revealed that native TP0326 is expressed at low abundance, while a protease‐surface accessibility assay confirmed surface exposure. Size‐exclusion chromatography and blue native polyacrylamide gel electrophoresis revealed a modular Bam complex in T. pallidum larger than that of Escherichia coli. Non‐orthologous ancillary factors and self‐association of TP0326 via its β‐barrel may both contribute to the Bam complex. T. pallidum‐infected rabbits mount a vigorous antibody response to both POTRA and β‐barrel portions of TP0326, whereas humans with secondary syphilis respond predominantly to POTRA. The syphilis spirochaete appears to have devised a stratagem for harnessing the Bam pathway while satisfying its need to limit surface antigenicity.


Infection and Immunity | 2015

Cyclic di-GMP Modulates Gene Expression in Lyme Disease Spirochetes at the Tick-Mammal Interface To Promote Spirochete Survival during the Blood Meal and Tick-to-Mammal Transmission

Melissa J. Caimano; Star Dunham-Ems; Anna M. Allard; Maria B. Cassera; Melisha R. Kenedy; Justin D. Radolf

ABSTRACT Borrelia burgdorferi, the Lyme disease spirochete, couples environmental sensing and gene regulation primarily via the Hk1/Rrp1 two-component system (TCS) and Rrp2/RpoN/RpoS pathways. Beginning with acquisition, we reevaluated the contribution of these pathways to spirochete survival and gene regulation throughout the enzootic cycle. Live imaging of B. burgdorferi caught in the act of being acquired revealed that the absence of RpoS and the consequent derepression of tick-phase genes impart a Stay signal required for midgut colonization. In addition to the behavioral changes brought on by the RpoS-off state, acquisition requires activation of cyclic di-GMP (c-di-GMP) synthesis by the Hk1/Rrp1 TCS; B. burgdorferi lacking either component is destroyed during the blood meal. Prior studies attributed this dramatic phenotype to a metabolic lesion stemming from reduced glycerol uptake and utilization. In a head-to-head comparison, however, the B. burgdorferi Δglp mutant had a markedly greater capacity to survive tick feeding than B. burgdorferi Δhk1 or Δrrp1 mutants, establishing unequivocally that glycerol metabolism is only one component of the protection afforded by c-di-GMP. Data presented herein suggest that the protective response mediated by c-di-GMP is multifactorial, involving chemotactic responses, utilization of alternate substrates for energy generation and intermediary metabolism, and remodeling of the cell envelope as a means of defending spirochetes against threats engendered during the blood meal. Expression profiling of c-di-GMP-regulated genes through the enzootic cycle supports our contention that the Hk1/Rrp1 TCS functions primarily, if not exclusively, in ticks. These data also raise the possibility that c-di-GMP enhances the expression of a subset of RpoS-dependent genes during nymphal transmission.


PLOS Neglected Tropical Diseases | 2012

Immune Evasion and Recognition of the Syphilis Spirochete in Blood and Skin of Secondary Syphilis Patients: Two Immunologically Distinct Compartments

Adriana R. Cruz; Lady G. Ramirez; Ana V. Zuluaga; Allan Pillay; Christine Abreu; Carlos A. Valencia; Carson J. La Vake; Jorge L. Cervantes; Star Dunham-Ems; Richard W. Cartun; Domenico Mavilio; Justin D. Radolf; Juan C. Salazar

Background The clinical syndrome associated with secondary syphilis (SS) reflects the propensity of Treponema pallidum (Tp) to escape immune recognition while simultaneously inducing inflammation. Methods To better understand the duality of immune evasion and immune recognition in human syphilis, herein we used a combination of flow cytometry, immunohistochemistry (IHC), and transcriptional profiling to study the immune response in the blood and skin of 27 HIV(-) SS patients in relation to spirochetal burdens. Ex vivo opsonophagocytosis assays using human syphilitic sera (HSS) were performed to model spirochete-monocyte/macrophage interactions in vivo. Results Despite the presence of low-level spirochetemia, as well as immunophenotypic changes suggestive of monocyte activation, we did not detect systemic cytokine production. SS subjects had substantial decreases in circulating DCs and in IFNγ-producing and cytotoxic NK-cells, along with an emergent CD56−/CD16+ NK-cell subset in blood. Skin lesions, which had visible Tp by IHC and substantial amounts of Tp-DNA, had large numbers of macrophages (CD68+), a relative increase in CD8+ T-cells over CD4+ T-cells and were enriched for CD56+ NK-cells. Skin lesions contained transcripts for cytokines (IFN-γ, TNF-α), chemokines (CCL2, CXCL10), macrophage and DC activation markers (CD40, CD86), Fc-mediated phagocytosis receptors (FcγRI, FcγR3), IFN-β and effector molecules associated with CD8 and NK-cell cytotoxic responses. While HSS promoted uptake of Tp in conjunction with monocyte activation, most spirochetes were not internalized. Conclusions Our findings support the importance of macrophage driven opsonophagocytosis and cell mediated immunity in treponemal clearance, while suggesting that the balance between phagocytic uptake and evasion is influenced by the relative burdens of bacteria in blood and skin and the presence of Tp subpopulations with differential capacities for binding opsonic antibodies. They also bring to light the extent of the systemic innate and adaptive immunologic abnormalities that define the secondary stage of the disease, which in the skin of patients trends towards a T-cell cytolytic response.


Molecular and Cellular Biology | 2010

A TFIIH-Associated Mediator Head Is a Basal Factor of Small Nuclear Spliced Leader RNA Gene Transcription in Early-Diverged Trypanosomes

Ju Huck Lee; Gang Cai; Aswini K. Panigrahi; Star Dunham-Ems; Tu N. Nguyen; Justin D. Radolf; Francisco J. Asturias; Arthur Günzl

ABSTRACT Genome annotation suggested that early-diverged kinetoplastids possess a reduced set of basal transcription factors. More recent work, however, on the lethal parasite Trypanosoma brucei identified extremely divergent orthologs of TBP, TFIIA, TFIIB, and TFIIH which, together with the small nuclear RNA-activating protein complex, form a transcription preinitiation complex (PIC) at the spliced leader (SL) RNA gene (SLRNA) promoter. The SL RNA is a small nuclear RNA and a trans splicing substrate for the maturation of all pre-mRNAs which is metabolized continuously to sustain gene expression. Here, we identified and biochemically characterized a novel TFIIH-associated protein complex in T. brucei (Med-T) consisting of nine subunits whose amino acid sequences are conserved only among kinetoplastid organisms. Functional analyses in vivo and in vitro demonstrated that the complex is essential for cell viability, SLRNA transcription, and PIC integrity. Molecular structure analysis of purified Med-T and Med-T/TFIIH complexes by electron microscopy revealed that Med-T corresponds to the mediator head module of higher eukaryotes. These data therefore show that mediator is a basal factor for small nuclear SL RNA gene transcription in trypanosomes and that the basal transcription function of mediator head is a characteristic feature of eukaryotes which developed early in their evolution.

Collaboration


Dive into the Star Dunham-Ems's collaboration.

Top Co-Authors

Avatar

Justin D. Radolf

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Melissa J. Caimano

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Juan C. Salazar

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Adriana R. Cruz

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Amit Luthra

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Daniel C. Desrosiers

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Arvind Anand

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Carson J. La Vake

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Morgan LeDoyt

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Carson Karanian

University of Connecticut Health Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge