Stavros Lomvardas
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stavros Lomvardas.
Cell | 2000
Theodora Agalioti; Stavros Lomvardas; Bhavin S. Parekh; Junming Yie; Tom Maniatis; Dimitris Thanos
Here, we show that the IFN-beta enhanceosome activates transcription by directing the ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. The enhanceosome is assembled in the nucleosome-free enhancer region of the IFN-beta gene, leading to the modification and remodeling of a strategically positioned nucleosome that masks the TATA box and the start site of transcription. Initially, the GCN5 complex is recruited, which acetylates the nucleosome, and this is followed by recruitment of the CBP-PolII holoenzyme complex. Nucleosome acetylation in turn facilitates SWI/SNF recruitment by CBP, resulting in chromatin remodeling. This program of recruitment culminates in the binding of TFIID to the promoter and the activation of transcription.
Cell | 2006
Stavros Lomvardas; Gilad Barnea; David J. Pisapia; Monica Mendelsohn; Jennifer Kirkland; Richard Axel
The expression of a single odorant receptor (OR) gene from a large gene family in individual sensory neurons is an essential feature of the organization and function of the olfactory system. We have used chromosome conformation capture to demonstrate the specific association of an enhancer element, H, on chromosome 14 with multiple OR gene promoters on different chromosomes. DNA and RNA fluorescence in situ hybridization (FISH) experiments allow us to visualize the colocalization of the H enhancer with the single OR allele that is transcribed in a sensory neuron. In transgenic mice bearing additional H elements, sensory neurons that express OR pseudogenes also express a second functional receptor. These data suggest a model of receptor choice in which a single trans-acting enhancer element may allow the stochastic activation of only one OR allele in an olfactory sensory neuron.
Cell | 2002
Zhonghui Guan; Maurizio Giustetto; Stavros Lomvardas; Joung-Hun Kim; Maria Concetta Miniaci; James H. Schwartz; Dimitris Thanos; Eric R. Kandel
Excitatory and inhibitory inputs converge on single neurons and are integrated into a coherent output. Although much is known about short-term integration, little is known about how neurons sum opposing signals for long-term synaptic plasticity and memory storage. In Aplysia, we find that when a sensory neuron simultaneously receives inputs from the facilitatory transmitter 5-HT at one set of synapses and the inhibitory transmitter FMRFamide at another, long-term facilitation is blocked and synapse-specific long-term depression dominates. Chromatin immunoprecipitation assays show that 5-HT induces the downstream gene C/EBP by activating CREB1, which recruits CBP for histone acetylation, whereas FMRFa leads to CREB1 displacement by CREB2 and recruitment of HDAC5 to deacetylate histones. When the two transmitters are applied together, facilitation is blocked because CREB2 and HDAC5 displace CREB1-CBP, thereby deacetylating histones.
Cell | 2001
Stavros Lomvardas; Dimitris Thanos
Here, we show that a nucleosome obstructing transcription from the IFN-beta promoter slides in vivo in response to virus infection, thus exposing the previously masked TATA box and the initiation site, a requirement for transcriptional activation. Our experiments also revealed that this mode of chromatin remodeling is a two-step reaction. First, the enhanceosome recruits the SWI/SNF chromatin-remodeling complex that modifies the nucleosome to allow binding of TBP. Second, DNA bending is induced by TBP binding, and the nucleosome slides to a new position. Experiments with other DNA binding proteins demonstrated a strong correlation between the ability to bend DNA and nucleosome sliding, suggesting that the sliding is induced by the bend.
Cell | 2012
E. Josephine Clowney; Mark LeGros; Colleen P. Mosley; Fiona G. Clowney; Eirene C. Markenskoff-Papadimitriou; Markko Myllys; Gilad Barnea; Carolyn A. Larabell; Stavros Lomvardas
Gene positioning and regulation of nuclear architecture are thought to influence gene expression. Here, we show that, in mouse olfactory neurons, silent olfactory receptor (OR) genes from different chromosomes converge in a small number of heterochromatic foci. These foci are OR exclusive and form in a cell-type-specific and differentiation-dependent manner. The aggregation of OR genes is developmentally synchronous with the downregulation of lamin b receptor (LBR) and can be reversed by ectopic expression of LBR in mature olfactory neurons. LBR-induced reorganization of nuclear architecture and disruption of OR aggregates perturbs the singularity of OR transcription and disrupts the targeting specificity of the olfactory neurons. Our observations propose spatial sequestering of heterochromatinized OR family members as a basis of monogenic and monoallelic gene expression.
Cell | 2011
Angeliki Magklara; Angela Yen; Bradley M. Colquitt; E. Josephine Clowney; William E. Allen; Eirene Markenscoff-Papadimitriou; Zoe A. Evans; Pouya Kheradpour; George Mountoufaris; Catriona Carey; Gilad Barnea; Manolis Kellis; Stavros Lomvardas
Constitutive heterochromatin is traditionally viewed as the static form of heterochromatin that silences pericentromeric and telomeric repeats in a cell cycle- and differentiation-independent manner. Here, we show that, in the mouse olfactory epithelium, olfactory receptor (OR) genes are marked in a highly dynamic fashion with the molecular hallmarks of constitutive heterochromatin, H3K9me3 and H4K20me3. The cell type and developmentally dependent deposition of these marks along the OR clusters are, most likely, reversed during the process of OR choice to allow for monogenic and monoallelic OR expression. In contrast to the current view of OR choice, our data suggest that OR silencing takes place before OR expression, indicating that it is not the product of an OR-elicited feedback signal. Our findings suggest that chromatin-mediated silencing lays a molecular foundation upon which singular and stochastic selection for gene expression can be applied.
Cell | 2002
Stavros Lomvardas; Dimitris Thanos
Transcriptional activation of the IFN-beta gene in response to virus infection requires the assembly of an enhanceosome, which instructs a recruitment program of chromatin modifiers/remodelers and general transcription factors to the promoter. This program culminates with sliding of a nucleosome blocking the core promoter to a downstream position, a prerequisite for transcriptional activation. We show that delivery of this nucleosome to the same downstream position to create an accessible IFN-beta core promoter prior to enhanceosome assembly results in major changes in the gene expression program with regard to the temporal pattern and the signal specificity of the transcriptional response. Thus, the identity of a gene expression program is achieved and maintained by the dynamic interplay between specific enhanceosomes and specific local chromatin structure.
Genome Research | 2012
Ramon Y. Birnbaum; E. Josephine Clowney; Orly Agamy; Mee J. Kim; Jingjing Zhao; Takayuki Yamanaka; Zachary Pappalardo; Shoa L. Clarke; Aaron M. Wenger; Loan Nguyen; Fiorella Gurrieri; David B. Everman; Charles E. Schwartz; Ohad S. Birk; Gill Bejerano; Stavros Lomvardas; Nadav Ahituv
Enhancers are essential gene regulatory elements whose alteration can lead to morphological differences between species, developmental abnormalities, and human disease. Current strategies to identify enhancers focus primarily on noncoding sequences and tend to exclude protein coding sequences. Here, we analyzed 25 available ChIP-seq data sets that identify enhancers in an unbiased manner (H3K4me1, H3K27ac, and EP300) for peaks that overlap exons. We find that, on average, 7% of all ChIP-seq peaks overlap coding exons (after excluding for peaks that overlap with first exons). By using mouse and zebrafish enhancer assays, we demonstrate that several of these exonic enhancer (eExons) candidates can function as enhancers of their neighboring genes and that the exonic sequence is necessary for enhancer activity. Using ChIP, 3C, and DNA FISH, we further show that one of these exonic limb enhancers, Dync1i1 exon 15, has active enhancer marks and physically interacts with Dlx5/6 promoter regions 900 kb away. In addition, its removal by chromosomal abnormalities in humans could cause split hand and foot malformation 1 (SHFM1), a disorder associated with DLX5/6. These results demonstrate that DNA sequences can have a dual function, operating as coding exons in one tissue and enhancers of nearby gene(s) in another tissue, suggesting that phenotypes resulting from coding mutations could be caused not only by protein alteration but also by disrupting the regulation of another gene.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Ilias K. Nolis; Daniel J. McKay; Eva Mantouvalou; Stavros Lomvardas; Menie Merika; Dimitris Thanos
We examined how remote enhancers establish physical communication with target promoters to activate gene transcription in response to environmental signals. Although the natural IFN-β enhancer is located immediately upstream of the core promoter, it also can function as a classical enhancer element conferring virus infection-dependent activation of heterologous promoters, even when it is placed several kilobases away from these promoters. We demonstrated that the remote IFN-β enhancer “loops out” the intervening DNA to reach the target promoter. These chromatin loops depend on sequence-specific transcription factors bound to the enhancer and the promoter and thus can explain the specificity observed in enhancer–promoter interactions, especially in complex genetic loci. Transcription factor binding sites scattered between an enhancer and a promoter can work as decoys trapping the enhancer in nonproductive loops, thus resembling insulator elements. Finally, replacement of the transcription factor binding sites involved in DNA looping with those of a heterologous prokaryotic protein, the λ repressor, which is capable of loop formation, rescues enhancer function from a distance by re-establishing enhancer–promoter loop formation.
Nature Neuroscience | 2016
Zhonghui Guan; Julia Kuhn; Xidao Wang; Bradley M. Colquitt; Carlos Solorzano; Smitha Vaman; Andrew K Guan; Zoe Evans-Reinsch; João M. Bráz; Marshall Devor; Sherry L Abboud-Werner; Lewis L. Lanier; Stavros Lomvardas; Allan I. Basbaum
Although microglia have been implicated in nerve injury–induced neuropathic pain, the manner by which injured sensory neurons engage microglia remains unclear. We found that peripheral nerve injury induced de novo expression of colony-stimulating factor 1 (CSF1) in injured sensory neurons. CSF1 was transported to the spinal cord, where it targeted the microglial CSF1 receptor (CSF1R). Cre-mediated sensory neuron deletion of Csf1 completely prevented nerve injury–induced mechanical hypersensitivity and reduced microglial activation and proliferation. In contrast, intrathecal injection of CSF1 induced mechanical hypersensitivity and microglial proliferation. Nerve injury also upregulated CSF1 in motoneurons, where it was required for ventral horn microglial activation and proliferation. Downstream of CSF1R, we found that the microglial membrane adaptor protein DAP12 was required for both nerve injury– and intrathecal CSF1–induced upregulation of pain-related microglial genes and the ensuing pain, but not for microglial proliferation. Thus, both CSF1 and DAP12 are potential targets for the pharmacotherapy of neuropathic pain.