Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stavros Xanthopoulos is active.

Publication


Featured researches published by Stavros Xanthopoulos.


IEEE Transactions on Nuclear Science | 2007

Performance Evaluation of a Dedicated Camera Suitable for Dynamic Radiopharmaceuticals Evaluation in Small Animals

George Loudos; Stan Majewski; R. Wojcik; Andrew G. Weisenberger; Nicolas Sakellios; Konstantina S. Nikita; Nikolaos K. Uzunoglu; Penelope Bouziotis; Stavros Xanthopoulos; Alexandra D. Varvarigou

As the result of a collaboration between the Detector and Imaging Group of Thomas Jefferson National Accelerator Facility (US), the Institute of Radioisotopes and Radiodiagnostic Products (IRRP) of N.C.S.R. ldquoDemokritosrdquo and the Biomedical Simulations and Imaging Applications Laboratory (BIOSIM) of National Technical University of Athens (Greece), a mouse sized camera optimized for Tc99m imaging was developed. The detector was built in Jefferson Lab and transferred to Greece, where it was evaluated with phantoms and small animals. The system will be used initially for planar dynamic studies in small animals, in order to assess the performance of new radiolabeled biomolecules for oncological studies. The active area of the detector is approximately 48 mm times 96 mm. It is based on two flat-panel Hamamatsu H8500 position sensitive photomultiplier tubes (PSPMT), a pixelated NaI(Tl) scintillator and a high resolution lead parallel-hole collimator. The system was developed to optimize both sensitivity and resolution for in vivo imaging of small animals injected with technetium compounds. The results of system evaluation in planar mode with phantoms are reported. Results are presented for in vivo dynamic studies of mice injected with > 100 muCi of two conventional and novel radiopharmaceuticals, namely Tc99m-MDP and Tc99m -Bombesin.


Bioconjugate Chemistry | 2009

Spacer Site Modifications for the Improvement of the in Vitro and in Vivo Binding Properties of 99mTc-N3S-X-Bombesin[2−14] Derivatives

Eirini Fragogeorgi; Christos Zikos; Eleni Gourni; Penelope Bouziotis; Maria Paravatou-Petsotas; George Loudos; Nikolaos Mitsokapas; Stavros Xanthopoulos; Mary Mavri-Vavayanni; Evangelia Livaniou; Alexandra D. Varvarigou; Spyridon C. Archimandritis

It has been shown that gastrin releasing peptide receptors (GRPRs) are overexpressed in various types of cancer cells. Bombesin is an analogue of the mammalian GRP that binds with high specificity and affinity to GRPRs. Significant research efforts have been lately devoted to the design of radiolabeled 8 or 14 aminoacid bombesin (BN) peptides for the detection (either with gamma or positron emitting radionuclides) and therapy (with beta(-) emitting radionuclides) of cancer. The specific aim of the present study was to further investigate the radiolabeled peptide structure and to determine whether the total absence of a linker or the use of a basic diverse amino acid linker could influence the biodistribution profile of the new compounds for specific targeting of human prostate cancer. Thus, two new derivatives with the structure Gly-Gly-Cys-X-BN[2-14], where linker X is either zero (I) or Orn-Orn-Orn (Orn: ornithine) (II) were designed and synthesized. The corresponding (99m)Tc-BN derivatives were obtained with high radiochemical yield (>98%) and had almost identical retention times in RP-HPLC with the (185/187)Re complexes, which were also characterized by ESI-MS. Metabolic stability was found to be high in human plasma, moderate in PC-3 cells, and rather low in mouse liver and kidney homogenates for both BN derivatives studied. The BN derivative without the spacer was less stable in cell culture and liver homogenates. A satisfactory binding affinity to GRPRs, in the nanomolar range, was obtained for both BN derivatives as well as for their Re complexes, with BN (II) demonstrating the highest one. In vitro internalization/externalization assays indicated that approximately 6% of BN (I) and approximately 25% of BN (II) were internalized into PC-3 cells. In vivo evaluation in normal Swiss mice and in tumor bearing SCID mice showed that BN (II) presented higher tumor and pancreas uptake than BN (I). Small animal SPECT dynamic imaging, carried out after an injection of BN (II) in mice bearing PC-3 tumors, resulted in PC-3 tumor delineation with low background activity. Overall, this study performed for two new N(3)S-X-BN[2-14] derivatives indicated that hydrophilicity and charge strongly affected the in vitro and in vivo binding properties and the biodistribution pattern. This finding is confirmed by SPECT imaging of BN (II), which is under further in vivo evaluation for detecting cancer-positive GRPRs.


Journal of Colloid and Interface Science | 2014

99mTc-labeled aminosilane-coated iron oxide nanoparticles for molecular imaging of ανβ3-mediated tumor expression and feasibility for hyperthermia treatment

Irene Tsiapa; Eleni K. Efthimiadou; Eirini Fragogeorgi; George Loudos; Alexandra D. Varvarigou; Penelope Bouziotis; George Kordas; Dimitris Mihailidis; George Nikiforidis; Stavros Xanthopoulos; Dimitrios Psimadas; Maria Paravatou-Petsotas; Lazaros Palamaris; John D. Hazle; George C. Kagadis

HYPOTHESIS Dual-modality imaging agents, such as radiolabeled iron oxide nanoparticles (IO-NPs), are promising candidates for cancer diagnosis and therapy. We developed and evaluated aminosilane coated Fe3O4 (10±2nm) as a tumor imaging agent in nuclear medicine through 3-aminopropyltriethoxysilane (APTES) functionalization. We evaluated this multimeric system of targeted (99m)Tc-labeled nanoparticles (NPs) conjugated with a new RGD derivate (cRGDfK-Orn3-CGG), characterized as NPs-RGD as a potential thermal therapy delivery vehicle. EXPERIMENTS Transmission Electron Microscopy (TEM) and spectroscopy techniques were used to characterize the IO-NPs indicating their functionalization with peptides. Radiolabeled IO-NPs (targeted, non-targeted) were evaluated with regard to their radiochemical, radiobiological and imaging characteristics. In vivo studies were performed in normal and ανβ3-positive tumor (U87MG glioblastoma) bearing mice. We also demonstrated that this system could reach ablative temperatures in vivo. FINDINGS Both radiolabeled IO-NPs were obtained in high radiochemical yield (>98%) and proved stable in vitro. The in vivo studies for both IO-NPs have shown significant liver and spleen uptake at all examined time points in normal and U87MG glioblastoma tumor-bearing mice, due to their colloidal nature. We have confirmed through in vivo biodistribution studies that the non-targeted (99m)Tc-NPs poorly internalized in the tumor, while the targeted (99m)Tc-NPs-RGD, present 9-fold higher tumor accumulation at 1h p.i. Accumulation of both IO-NPs in other organs was negligible. Blocking experiments indicated target specificity for integrin receptors in U87MG glioblastoma cells. The preliminary in vivo study of applied alternating magnetic field showed that the induced hyperthermia is feasible due to the aid of IO-NPs.


Nuclear Medicine and Biology | 2013

Biological evaluation of an ornithine-modified 99mTc-labeled RGD peptide as an angiogenesis imaging agent

Irene Tsiapa; George Loudos; Alexandra D. Varvarigou; Eirini Fragogeorgi; Dimitrios Psimadas; Theodoros Tsotakos; Stavros Xanthopoulos; Dimitris Mihailidis; Penelope Bouziotis; George Nikiforidis; George C. Kagadis

INTRODUCTION Radiolabeled RGD peptides that specifically target integrin α(ν)β(3) have great potential in early tumor detection through noninvasive monitoring of tumor angiogenesis. Based on previous findings of our group on radiopeptides containing positively charged aminoacids, we developed a new cyclic cRGDfK derivative, c(RGDfK)-(Orn)(3)-CGG. This new peptide availing the polar linker (Orn)(3) and the (99m)Tc-chelating moiety CGG (Cys-Gly-Gly) is appropriately designed for (99m)Tc-labeling, as well as consequent conjugation onto nanoparticles. METHODS A tumor imaging agent, c(RGDfK)-(Orn)(3)-[CGG-(99m)Tc], is evaluated with regard to its radiochemical, radiobiological and imaging characteristics. RESULTS The complex c(RGDfK)-(Orn)(3)-[CGG-(99m)Tc] was obtained in high radiochemical yield (>98%) and was stable in vitro and ex vivo. It presented identical to the respective, fully analytically characterized (185/187)Re complex retention time in RP-HPLC. In contrary to other RGD derivatives, we showed that the new radiopeptide exhibits kidney uptake and urine excretion due to the ornithine linker. High tumor uptake (3.87±0.48% ID/g at 60 min p.i.) was observed and was maintained relatively high even at 24 h p.i. (1.83±0.05 % ID/g), thus providing well-defined scintigraphic imaging. Accumulation in other organs was negligible. Blocking experiments indicated target specificity for integrin receptors in U87MG glioblastoma cells. CONCLUSION Due to its relatively high tumor uptake, renal elimination and negligible abdominal localization, the new (99m)Tc-RGD peptide is considered promising in the field of imaging α(ν)β(3)-positive tumors. However, the preparation of multifunctional SPECT/MRI contrast agents (RGD-conjugated nanoparticles) for dual modality imaging of integrin expressing tumors should be further investigated.


Bioorganic & Medicinal Chemistry | 2012

Synthesis and comparative assessment of a labeled RGD peptide bearing two different 99mTc-tricarbonyl chelators for potential use as targeted radiopharmaceutical

Dimitrios Psimadas; Melpomeni Fani; Eleni Gourni; George Loudos; Stavros Xanthopoulos; Christos Zikos; Penelope Bouziotis; Alexandra D. Varvarigou

During the past decade radiolabeled RGD-peptides have been extensively studied to develop site-directed targeting vectors for integrins. Integrins are heterodimeric cell-surface adhesion receptors, which are upregulated in cancer cells and neovasculature during tumor angiogenesis and recognize the RGD aminoacid sequence. In the present study, we report the synthesis and development of two derivatives of the Nε-Lys derivatized cyclic Arg-Gly-Asp-D-Phe-Lys peptide, namely of cRGDfKHis and cRGDfK-CPA (CPA: 3-L-Cysteine Propionic Acid), radiolabeled via the [(99m)Tc(H(2)O)(3)(CO)(3)](+) metal aquaion at a high yield even at low concentrations of 10-5M (>87%) for cRGDfK-10-5M (>93%) for cRGDfK-CPA. Radiolabeled peptides were characterized with regard to their stability in saline, in His/Cys solutions, as well as in plasma, serum and tissue homogenates and were found to be practically stable. Internalization and efflux assays using αvβ3-receptor-positive MDA-MB 435 breast cancer cells showed a good percentage of quick internalization (29.1 ± 9.8% for (99m)Tc-HiscRGDfK and 37.0 ± 0.7% for (99m)Tc-CPA-cRGDfK at 15 min) and no retention of radioactivity for both derivatives. Their in vivo behavior was assessed in normal mice and pathological SCID mice bearing MDA-MB 435 ανβ3 positive breast tumors. Both presented fast blood clearance and elimination via both the urinary and hepatobiliary systems, with (99m)Tc-His-cRGDfK remaining for a longer time than (99m)Tc-CPA-cRGDfK in all organs examined. Tumor uptake 30 min pi was higher for (99m)Tc-CPAcRGDfK (4.2 ± 1.5% ID/g) than for (99m)Tc-His-cRGDfK (2.8 ± 1.5% ID/g). Dynamic scintigraphic studies showed that the tumor could be visualized better between 15 and 45 min pi for both radiolabeled compounds but low delineation occurred due to high abdominal background. It was finally noticed that the accumulated activity on the tumor site was depended on the size of the experimental tumor; the smaller the size, the higher was the radioactivity concentration.


International Journal of Pharmaceutics | 2012

Structural modifications of 99mTc-labelled bombesin-like peptides for optimizing pharmacokinetics in prostate tumor targeting

Christos C. Liolios; Eirini Fragogeorgi; Christos Zikos; George Loudos; Stavros Xanthopoulos; Penelope Bouziotis; Maria Paravatou-Petsotas; Evangelia Livaniou; Alexandra D. Varvarigou; Gregory Sivolapenko

PURPOSE The main goal of the present study was to investigate the importance of the addition of a positively charged aa in the naturally occurring bombesin (BN) peptide for its utilization as radiodiagnostic agent, taking into consideration the biodistribution profile, the pharmacokinetic characteristics and the tumor targeting ability. METHODS Two BN-derivatives of the general structure [M-chelator]-(spacer)-BN(2-14)-NH(2), where M: (99m)Tc or (185/187)Re, chelator: Gly-Gly-Cys-, spacer: -(arginine)(3)-, M-BN-A; spacer: -(ornithine)(3)-, M-BN-O; have been prepared and evaluated as tumor imaging agents. RESULTS The peptides under study presented high radiolabelling efficiency (>98%), significant stability in human plasma (>60% intact radiolabelled peptide after 1h incubation) and comparable receptor binding affinity with the standard [(125)I-Tyr(4)]-BN. Their internalization rates in the prostate cancer PC-3 cells differed, although the amount of internalized peptide was the same. The biodistribution and the dynamic γ-camera imaging studies in normal and PC-3 tumor-bearing SCID mice have shown significant tumor uptake, combined with fast blood clearance, through the urinary pathway. CONCLUSION The addition of the charged aa spacer in the BN structure was advantageous for biodistribution, pharmacokinetics and tumor targeting ability, because it reduced the upper abdominal radioactivity levels and increased tumor/normal tissue contrast ratios.


EJNMMI Physics | 2015

Initial in vitro and in vivo assessment of Au@DTDTPA-RGD nanoparticles for Gd-MRI and 68Ga-PET dual modality imaging

Charalmpos Tsoukalas; Gautier Laurent; Gloria Jiménez Sánchez; Theodoros Tsotakos; Rana Bazzi; Dimitris Stellas; Constantinos D. Anagnostopoulos; Lia Angela Moulopoulos; Vasilis Koutoulidis; Maria Paravatou-Petsotas; Stavros Xanthopoulos; Stéphane Roux; Penelope Bouziotis

Gadolinium chelate coated gold nanoparticles (Au@DTDTPA) can be applied as contrast agents for both in vivo X-ray and magnetic resonance imaging. In this work, our aim was to radiolabel and evaluate this gold nanoparticle with Ga-68, in order to produce a dual modality PET/MRI imaging probe. For a typical preparation of 68Ga-labeled nanoparticles, the Au@DTDTPA nanoparticles (Au@DTDTPA/Au@DTDTPA-RGD) were mixed with ammonium acetate buffer, pH 5 and 40 MBq of 68Ga eluate. The mixture was then incubated for 45 min at 65 AaC. Radiochemical purity was determined by ITLC. In vitro stability of both radiolabeled species was assessed in saline and serum. In vitro cell binding experiments were performed on integrin ανβ3 receptor-positive U87MG cancer cells. Non-specific Au@DTDTPA was used for comparison. Ex vivo biodistribution studies and in vivo PET and MRI imaging studies in U87MG tumor-bearing SCID mice followed. The Au@DTDTPA nanoparticles were labeled with Gallium-68 at high radiochemical yield (>95%) and were stable at RT, and in the presence of serum, for up to 3 h. The cell binding assay on U87MG glioma cells proved that 68Ga-cRGD-Au@DTDTPA had specific recognition for these cells. Biodistribution studies in U87MG tumor-bearing SCID mice showed that the tumor to muscle ratio increased from 1 to 2 h p.i. (3,71 ± 0.22 and 4,69 ± 0.09 respectively), showing a clear differentiation between the affected and the non-affected tissue. The acquired PET and MRI images were in accordance to the ex vivo biodistribution results. The preliminary results of this study warrant the need for further development of Au@DTDTPA nanoparticles radiolabeled with Ga-68, as possible dual-modality PET/MRI imaging agents.


Contrast Media & Molecular Imaging | 2017

Gallium-68 Labeled Iron Oxide Nanoparticles Coated with 2,3-Dicarboxypropane-1,1-diphosphonic Acid as a Potential PET/MR Imaging Agent: A Proof-of-Concept Study

Maria-Argyro Karageorgou; Sanja Vranjes-Djuric; Magdalena Radović; Anna Lyberopoulou; Bratislav Antić; Maritina Rouchota; Maria Gazouli; George Loudos; Stavros Xanthopoulos; Zili Sideratou; D. Stamopoulos; Penelope Bouziotis; Charalampos Tsoukalas

The aim of this study was to develop a dual-modality PET/MR imaging probe by radiolabeling iron oxide magnetic nanoparticles (IONPs), surface functionalized with water soluble stabilizer 2,3-dicarboxypropane-1,1-diphosphonic acid (DPD), with the positron emitter Gallium-68. Magnetite nanoparticles (Fe3O4 MNPs) were synthesized via coprecipitation method and were stabilized with DPD. The Fe3O4-DPD MNPs were characterized based on their structure, morphology, size, surface charge, and magnetic properties. In vitro cytotoxicity studies showed reduced toxicity in normal cells, compared to cancer cells. Fe3O4-DPD MNPs were successfully labeled with Gallium-68 at high radiochemical purity (>91%) and their stability in human serum and in PBS was demonstrated, along with their further characterization on size and magnetic properties. The ex vivo biodistribution studies in normal Swiss mice showed high uptake in the liver followed by spleen. The acquired PET images were in accordance with the ex vivo biodistribution results. Our findings indicate that 68Ga-Fe3O4-DPD MNPs could serve as an important diagnostic tool for biomedical imaging.


Molecular Medicine Reports | 2017

Radiolabeled methotrexate as a diagnostic agent of inflammatory target sites: A proof-of-concept study

Maria Papachristou; George A. Kastis; Petros Z. Stavrou; Stavros Xanthopoulos; Lars R. Furenlid; Ioannis E. Datseris; Penelope Bouziotis

Methotrexate (MTX), as a pharmaceutical, is frequently used in tumor chemotherapy and is also a part of the established treatment of a number of autoimmune inflammatory disorders. Radiolabeled MTX has been studied as a tumor-diagnostic agent in a number of published studies. In the present study, the potential use of technetium-99m-labelled MTX (99mTc-MTX) as a radiotracer was investigated for the identification of inflammatory target sites. The labelling of MTX was carried out via a 99mTc-gluconate precursor. Evaluation studies included in vitro stability, plasma protein binding assessment, partition-coefficient estimation, in vivo scintigraphic imaging and ex vivo animal experiments in an animal inflammation model. MTX was successfully labelled with 99mTc, with a radiochemical purity of >95%. Stability was assessed in plasma, where it remained intact up to 85% at 4 h post-incubation, while protein binding of the radiotracer was observed to be ~50% at 4 h. These preclinical ex vivo and in vivo studies indicated that 99mTc-MTX accumulates in inflamed tissue, as well as in the spinal cord, joints and bones; all areas with relatively high remodeling activity. The results are promising, and set the stage for further work on the development and application of 99mTc-MTX as a radiotracer for inflammation associated with rheumatoid arthritis.


Nuclear Medicine and Biology | 2016

Co-administration of succinylated gelatine with a 99mTc-bombesin analogue, effects on pharmacokinetics and tumor uptake

Christos C. Liolios; Stavros Xanthopoulos; George Loudos; Alexandra D. Varvarigou; Gregory Sivolapenko

The bombesin analogue, [(99m)Tc-GGC]-(Ornithine)3-BN(2-14), (99m)Tc-BN-O, targeting gastrin releasing peptide receptors (GRPrs) on the surface of tumors, was pre-clinically investigated as potential imaging agent for single photon emission computed tomography (SPECT). In addition, the improvement of its pharmacokinetic profile (PK) was investigated through the co-administration of a succinylated gelatin plasma expander (Gelofusine), aiming to reduce its kidney accumulation and enhance its tumor-to-normal tissue contrast ratios. Biodistribution data were collected from normal mice and rats, and PC-3 tumor bearing mice, in reference to its PK, metabolism and tumor uptake. Imaging data were also collected from PC-3 tumor bearing mice. Biodistribution and imaging experiments showed that (99m)Tc-BN-O was able to efficiently localize the tumor (5.23 and 7.00% ID/g at 30 and 60min post injection, respectively), while at the same time it was rapidly cleared from the circulation through the kidneys. HPLC analysis of kidney samples, collected at 60min p.i. from normal mice and rats, showed that the majority of radioactivity detected was due to intact peptide i.e. 56% for mice and 73% for rats. Co-administration of (99m)Tc-BN-O with Gelo resulted in the reduction of kidney uptake in both animal models. The integrated area under the curve (AUC30-60 min) from the concentration-time plots of kidneys was decreased in both mice and rats by 25 and 50%, respectively. In PC-3 tumor bearing mice, an increase of tumor uptake (AUCtumor increased by 69%) was also observed with Gelo. An improvement in tumor-to-blood and tumor-to-normal tissue ratios was noted in all cases with the exception of the pancreas, which normally expresses GRPr. The results of this preclinical study may also be extended to other similar peptides, which are utilized in prostate cancer imaging and present similar PK profile.

Collaboration


Dive into the Stavros Xanthopoulos's collaboration.

Top Co-Authors

Avatar

Penelope Bouziotis

Thomas Jefferson National Accelerator Facility

View shared research outputs
Top Co-Authors

Avatar

George Loudos

Technological Educational Institute of Athens

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eleni Gourni

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dimitrios Psimadas

Technological Educational Institute of Athens

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George C. Kagadis

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge