Stavroula Balabani
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stavroula Balabani.
Physics of Fluids | 2007
Efstathios Konstantinidis; Stavroula Balabani; Michael Yianneskis
Cylinder wakes display distinct modes of vortex shedding when perturbed by appropriate means. By investigating experimentally the wake of a circular cylinder perturbed by a periodic fluctuation imposed on the inflow velocity, it is shown that bimodal behavior is possible. During a given experiment, the wake switches back and forth between two different vortex shedding modes, more specifically, a 2S↔2P transition is observed. No discernible change in the timing of vortex formation is found to accompany the transition. Modal decomposition of the velocity field is employed to exemplify the interaction of the imposed symmetrical perturbation and the intrinsic antisymmetrical instability of the near wake.
Biophysical Journal | 2009
Lorna Ashton; Jonathan Dusting; Eboshogwe Imomoh; Stavroula Balabani; Ewan W. Blanch
Conformational changes due to externally applied physiochemical parameters, including pH, temperature, solvent composition, and mechanical forces, have been extensively reported for numerous proteins. However, investigations on the effect of fluid shear flow on protein conformation remain inconclusive despite its importance not only in the research of protein dynamics but also for biotechnology applications where processes such as pumping, filtration, and mixing may expose protein solutions to changes in protein structure. By combining particle image velocimetry and Raman spectroscopy, we have successfully monitored reversible, shear-induced structural changes of lysozyme in well-characterized flows. Shearing of lysozyme in water altered the proteins backbone structure, whereas similar shear rates in glycerol solution affected the solvent exposure of side-chain residues located toward the exterior of the lysozyme alpha-domain. The results demonstrate the importance of measuring conformational changes in situ and of quantifying fluid stresses by the three-dimensional shear tensor to establish reversible unfolding or misfolding transitions occurring due to flow exposure.
Journal of Fluid Mechanics | 2005
Efstathios Konstantinidis; Stavroula Balabani; Michael Yianneskis
The interaction of vortex shedding from a circular cylinder with an inflow which has low-amplitude periodic velocity oscillations (perturbations) superimposed upon it, was investigated experimentally by means of particle image velocimetry. The experiments were made at three perturbation frequencies across the lock-on range in which the vortex shedding frequency is synchronized with the subharmonic of the imposed frequency. The basic wake pattern in this range is antisymmetric vortex shedding, i.e. the familiar 2S mode. The timing of vortex shedding is defined with respect to the cross-flow oscillation of the wake which is found to play a critical role. Quantitative analysis of the phase-referenced patterns of vorticity distribution in the wake shows that a vortex is actually shed from the cylinder when the cross-flow oscillation of the wake is strongest, marked by a sudden drop in the computed vortex strength. At the middle of the lock-on range, shedding occurs near the minimum inflow velocity in the cycle or, equivalently, during the forward stroke of a cylinder oscillating in-line with the flow. It is argued that the imposed timing of vortex shedding relative to the cylinder motion induces a negative excitation from the fluid, which might explain why the in-line response of a freely vibrating cylinder exhibits two positive excitation regions separated by the lock-on region found in forced oscillations.
Biomicrofluidics | 2012
Joseph M. Sherwood; Jonathan Dusting; Efstathios Kaliviotis; Stavroula Balabani
Red blood cell (RBC) aggregation is a multifaceted phenomenon, and whether it is generally beneficial or deleterious remains unclear. In order to better understand its effect on microvascular blood flow, the phenomenon must be studied in complex geometries, as it is strongly dependent on time, flow, and geometry. The cell-depleted layer (CDL) which forms at the walls of microvessels has been observed to be enhanced by aggregation; however, details of the characteristics of the CDL in complex regions, such as bifurcations, require further investigation. In the present study, a microchannel with a T-junction was used to analyze the influence of aggregation on the flow field and the CDL. Micro-PIV using RBCs as tracers provided high resolution cell velocity data. CDL characteristics were measured from the same data using a newly developed technique based on motion detection. Skewed and sharpened velocity profiles in the daughter branches were observed, contrary to the behavior of a continuous Newtonian fluid. RBC aggregation was observed to increase the skewness, but decrease the sharpening, of the velocity profiles in the daughter branches. The CDL width was found to be significantly greater, with a wider distribution, in the presence of aggregation and the mean width increased proportionally with the reciprocal of the fraction of flow entering the daughter branch. Aggregation also significantly increased the roughness of the interface between the CDL and the RBC core. The present results provide further insight into how RBC aggregation may affect the flow in complex geometries, which is of importance in both understanding its functions invivo, and utilizing it as a tool in microfluidic devices.
Medical Engineering & Physics | 2014
Mona Alimohammadi; Obiekezie Agu; Stavroula Balabani; Vanessa Díaz-Zuccarini
Aortic dissection has high morbidity and mortality rates and guidelines regarding surgical intervention are not clearly defined. The treatment of aortic dissection varies with each patient and detailed knowledge of haemodynamic and mechanical forces would be advantageous in the process of choosing a course of treatment. In this study, a patient-specific dissected aorta geometry is constructed from computed tomography scans. Dynamic boundary conditions are implemented by coupling a three element Windkessel model to the 3D domain at each outlet, in order to capture the essential behaviour of the downstream vasculature. The Windkessel model parameters are defined based on clinical data. The predicted minimum and maximum pressures are close to those measured invasively. Malperfusion is indicated and complex flow patterns are observed. Pressure, flow and wall shear stress distributions are analysed. The methodology presented here provides insight into the haemodynamics in a patient-specific dissected aorta and represents a development towards the use of CFD simulations as a diagnostic tool for aortic dissection.
Biomechanics and Modeling in Mechanobiology | 2014
Joseph M. Sherwood; Efstathios Kaliviotis; Jonathan Dusting; Stavroula Balabani
Microscale blood flow is characterised by heterogeneous distributions of hematocrit, viscosity and velocity. In microvascular bifurcations, cells are unevenly distributed between the branches, and this effect can be amplified in subsequent branches depending on a number of parameters. We propose an approach to infer hematocrit profiles of human blood flowing through a bifurcating microchannel. The influence of aggregation, induced by the addition of Dextran 2000 to the samples, is also considered. Averaged values indicate plasma skimming, particularly in the presence of red blood cell (RBC) aggregation. Using an empirical model, the hematocrit profiles are used to estimate local relative viscosity distributions. Simulations are used to predict how the non-uniform viscosity influences the velocity profiles. Comparing these data to velocity profiles of RBCs measured using particle image velocimetry provides validation of the model. It is observed that aggregation blunts velocity profiles after a long straight section of channel. Downstream of the bifurcation, skewing of the velocity profiles is detected, which is enhanced by aggregation. The proposed methodology is capable of providing hitherto unreported information on important aspects of microscale blood rheology.
Biophysical Journal | 2010
Lorna Ashton; Jonathan Dusting; Eboshogwe Imomoh; Stavroula Balabani; Ewan W. Blanch
By directly monitoring stirred protein solutions with Raman spectroscopy, the reversible unfolding of proteins caused by fluid shear is examined for several natural proteins with varying structural properties and molecular weight. While complete denaturation is not observed, a wide range of spectral variances occur for the different proteins, indicating subtle conformational changes that appear to be protein-specific. A number of significant overall trends are apparent from the study. For globular proteins, the overall extent of spectral variance increases with protein size and the proportion of beta-structure. For two less structured proteins, fetuin and alpha-casein, the observed changes are of relatively low magnitude, despite the greater molecular structural mobility of these proteins. This implies that other protein-specific factors, such as posttranslational modifications, may also be significant. Individual band changes occurring in the spectral profiles of each individual protein are also discussed in detail.
Biomedical Engineering Online | 2015
Mona Alimohammadi; Joseph M. Sherwood; Morad Karimpour; Obiekezie Agu; Stavroula Balabani; Vanessa Díaz-Zuccarini
BackgroundThe management and prognosis of aortic dissection (AD) is often challenging and the use of personalised computational models is being explored as a tool to improve clinical outcome. Including vessel wall motion in such simulations can provide more realistic and potentially accurate results, but requires significant additional computational resources, as well as expertise. With clinical translation as the final aim, trade-offs between complexity, speed and accuracy are inevitable. The present study explores whether modelling wall motion is worth the additional expense in the case of AD, by carrying out fluid-structure interaction (FSI) simulations based on a sample patient case.MethodsPatient-specific anatomical details were extracted from computed tomography images to provide the fluid domain, from which the vessel wall was extrapolated. Two-way fluid-structure interaction simulations were performed, with coupled Windkessel boundary conditions and hyperelastic wall properties. The blood was modelled using the Carreau-Yasuda viscosity model and turbulence was accounted for via a shear stress transport model. A simulation without wall motion (rigid wall) was carried out for comparison purposes.ResultsThe displacement of the vessel wall was comparable to reports from imaging studies in terms of intimal flap motion and contraction of the true lumen. Analysis of the haemodynamics around the proximal and distal false lumen in the FSI model showed complex flow structures caused by the expansion and contraction of the vessel wall. These flow patterns led to significantly different predictions of wall shear stress, particularly its oscillatory component, which were not captured by the rigid wall model.ConclusionsThrough comparison with imaging data, the results of the present study indicate that the fluid-structure interaction methodology employed herein is appropriate for simulations of aortic dissection. Regions of high wall shear stress were not significantly altered by the wall motion, however, certain collocated regions of low and oscillatory wall shear stress which may be critical for disease progression were only identified in the FSI simulation. We conclude that, if patient-tailored simulations of aortic dissection are to be used as an interventional planning tool, then the additional complexity, expertise and computational expense required to model wall motion is indeed justified.
Medical Engineering & Physics | 2011
Efstathios Kaliviotis; Jonathan Dusting; Stavroula Balabani
The spatial characteristics of blood viscosity were investigated by combining a newly developed constitutive equation with shear deformation fields calculated from velocity measurements obtained by a μPIV based technique. Blood at physiological hematocrit levels and in the presence of aggregation was sheared in a narrow gap plate-plate geometry and the velocity and aggregation characteristics were determined from images captured using a high resolution camera. Changes in the microstructure of blood caused by aggregation were observed to affect the flow characteristics. At low shear rates, high aggregation and network formation caused the RBC motion to become essentially two-dimensional. The measured velocity fields were used to estimate the magnitude of shear which was subsequently used in conjunction with the new model to assess the spatial variation of viscosity across the flow domain. It was found that the non-uniform microstructural characteristics of blood influence its viscosity distribution accordingly. The viscosity of blood estimated in the core of the examined flow, using a zero-gradient core velocity profile assumption, was found to be significantly higher than the overall effective viscosity determined using other velocity profile assumptions.
Applied Thermal Engineering | 1997
G. Bergeles; D. Bouris; M. Yianneskis; Stavroula Balabani; A. Kravaritis; S. Itskos
Abstract The work presented in this article is directed towards the understanding of the mechanism of ash deposition on the surfaces of tubes of heat exchangers in lignite utility boilers and the evaluation of the influence of fouling on heat exchanger efficiency. For this purpose a numerical model was developed to predict the deposition of particles onto the heat transfer surfaces. The deposition model is combined with a numerical procedure that solves the two phase flow and temperature field around the tubes of the heat exchanger. Predictions of the flow field in both in-line and staggered tube bundles are validated through comparisons with experimental measurements that are conducted in laboratory model geometries. Experimental techniques include laser-sheet flow visualisation and laser Doppler Anemometry (LDA). Observations in full scale geometries of lignite utility boiler heat exchangers that are in current operation are provided by the industrial partner. The results of the work performed indicate that the maximum deposit height on the surface of the first tube is reached in about two weeks for a staggered tube bundle arrangement. It is the actual spacing of the tube arrangement that plays an important role in reducing the fouling rate while closely spaced tubes in in-line arrangements show signs of bridge formation between subsequent tube rows.