Stavroula Kanoni
Queen Mary University of London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stavroula Kanoni.
The New England Journal of Medicine | 2014
Jacy R. Crosby; Gina M. Peloso; Paul L. Auer; David R. Crosslin; Nathan O. Stitziel; Leslie A. Lange; Yingchang Lu; Zheng-zheng Tang; He Zhang; George Hindy; Nicholas G. D. Masca; Kathleen Stirrups; Stavroula Kanoni; Ron Do; Goo Jun; Youna Hu; Hyun Min Kang; Chenyi Xue; Anuj Goel; Martin Farrall; Stefano Duga; Pier Angelica Merlini; Rosanna Asselta; Domenico Girelli; Nicola Martinelli; Wu Yin; Dermot F. Reilly; Elizabeth K. Speliotes; Caroline S. Fox; Kristian Hveem
BACKGROUND Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype. METHODS We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons. RESULTS An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G→A and IVS3+1G→T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (P<1×10(-20)), and circulating levels of APOC3 in carriers were 46% lower than levels in noncarriers (P=8×10(-10)). The risk of coronary heart disease among 498 carriers of any rare APOC3 mutation was 40% lower than the risk among 110,472 noncarriers (odds ratio, 0.60; 95% confidence interval, 0.47 to 0.75; P=4×10(-6)). CONCLUSIONS Rare mutations that disrupt APOC3 function were associated with lower levels of plasma triglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease. (Funded by the National Heart, Lung, and Blood Institute and others.).
Epigenetics | 2014
Loukia Tsaprouni; Tsun Po Yang; Jordana T. Bell; Katherine J. Dick; Stavroula Kanoni; James Nisbet; Ana Viñuela; Elin Grundberg; Christopher P. Nelson; Eshwar Meduri; Alfonso Buil; François Cambien; Christian Hengstenberg; Jeanette Erdmann; Heribert Schunkert; Alison H. Goodall; Willem H. Ouwehand; Emmanouil T. Dermitzakis; Tim D. Spector; Nilesh J. Samani; Panos Deloukas
Smoking is a major risk factor in many diseases. Genome wide association studies have linked genes for nicotine dependence and smoking behavior to increased risk of cardiovascular, pulmonary, and malignant diseases. We conducted an epigenome wide association study in peripheral-blood DNA in 464 individuals (22 current smokers and 263 ex-smokers), using the Human Methylation 450 K array. Upon replication in an independent sample of 356 twins (41 current and 104 ex-smokers), we identified 30 probes in 15 distinct loci, all of which reached genome-wide significance in the combined analysis P < 5 × 10−8. All but one probe (cg17024919) remained significant after adjusting for blood cell counts. We replicated all 9 known loci and found an independent signal at CPOX near GPR15. In addition, we found 6 new loci at PRSS23, AVPR1B, PSEN2, LINC00299, RPS6KA2, and KIAA0087. Most of the lead probes (13 out of 15) associated with cigarette smoking, overlapped regions of open chromatin (FAIRE and DNaseI hypersensitive sites) or / and H3K27Ac peaks (ENCODE data set), which mark regulatory elements. The effect of smoking on DNA methylation was partially reversible upon smoking cessation for longer than 3 months. We report the first statistically significant interaction between a SNP (rs2697768) and cigarette smoking on DNA methylation (cg03329539). We provide evidence that the metSNP for cg03329539 regulates expression of the CHRND gene located circa 95 Kb downstream of the methylation site. Our findings suggest the existence of dynamic, reversible site-specific methylation changes in response to cigarette smoking , which may contribute to the extended health risks associated with cigarette smoking.
Diabetes Care | 2010
Jennifer A. Nettleton; Nicola M. McKeown; Stavroula Kanoni; Rozenn N. Lemaitre; Marie-France Hivert; Julius S. Ngwa; Frank J. A. van Rooij; Emily Sonestedt; Mary K. Wojczynski; Zheng Ye; Toshisko Tanaka
OBJECTIVE Whole-grain foods are touted for multiple health benefits, including enhancing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin. RESEARCH DESIGN AND METHODS Via meta-analysis of data from 14 cohorts comprising ∼48,000 participants of European descent, we studied interactions of whole-grain intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2 loci) concentrations. For tests of interaction, we considered a P value <0.0028 (0.05 of 18 tests) as statistically significant. RESULTS Greater whole-grain food intake was associated with lower fasting glucose and insulin concentrations independent of demographics, other dietary and lifestyle factors, and BMI (β [95% CI] per 1-serving-greater whole-grain intake: −0.009 mmol/l glucose [−0.013 to −0.005], P < 0.0001 and −0.011 pmol/l [ln] insulin [−0.015 to −0.007], P = 0.0003). No interactions met our multiple testing–adjusted statistical significance threshold. The strongest SNP interaction with whole-grain intake was rs780094 (GCKR) for fasting insulin (P = 0.006), where greater whole-grain intake was associated with a smaller reduction in fasting insulin concentrations in those with the insulin-raising allele. CONCLUSIONS Our results support the favorable association of whole-grain intake with fasting glucose and insulin and suggest a potential interaction between variation in GCKR and whole-grain intake in influencing fasting insulin concentrations.
The American Journal of Clinical Nutrition | 2013
Toshiko Tanaka; Julius S. Ngwa; Frank J. A. van Rooij; M. Carola Zillikens; Mary K. Wojczynski; Alexis C. Frazier-Wood; Denise K. Houston; Stavroula Kanoni; Rozenn N. Lemaitre; Jian'an Luan; Vera Mikkilä; Frida Renström; Emily Sonestedt; Jing Hua Zhao; Audrey Y. Chu; Lu Qi; Daniel I. Chasman; Marcia C. de Oliveira Otto; Emily J. Dhurandhar; Mary F. Feitosa; Ingegerd Johansson; Kay-Tee Khaw; Kurt Lohman; Ani Manichaikul; Nicola M. McKeown; Dariush Mozaffarian; Andrew Singleton; Kathleen Stirrups; Jorma Viikari; Zheng Ye
Background: Macronutrient intake varies substantially between individuals, and there is evidence that this variation is partly accounted for by genetic variants. Objective: The objective of the study was to identify common genetic variants that are associated with macronutrient intake. Design: We performed 2-stage genome-wide association (GWA) meta-analysis of macronutrient intake in populations of European descent. Macronutrients were assessed by using food-frequency questionnaires and analyzed as percentages of total energy consumption from total fat, protein, and carbohydrate. From the discovery GWA (n = 38,360), 35 independent loci associated with macronutrient intake at P < 5 × 10−6 were identified and taken forward to replication in 3 additional cohorts (n = 33,533) from the DietGen Consortium. For one locus, fat mass obesity-associated protein (FTO), cohorts with Illumina MetaboChip genotype data (n = 7724) provided additional replication data. Results: A variant in the chromosome 19 locus (rs838145) was associated with higher carbohydrate (β ± SE: 0.25 ± 0.04%; P = 1.68 × 10−8) and lower fat (β ± SE: −0.21 ± 0.04%; P = 1.57 × 10−9) consumption. A candidate gene in this region, fibroblast growth factor 21 (FGF21), encodes a fibroblast growth factor involved in glucose and lipid metabolism. The variants in this locus were associated with circulating FGF21 protein concentrations (P < 0.05) but not mRNA concentrations in blood or brain. The body mass index (BMI)–increasing allele of the FTO variant (rs1421085) was associated with higher protein intake (β ± SE: 0.10 ± 0.02%; P = 9.96 × 10−10), independent of BMI (after adjustment for BMI, β ± SE: 0.08 ± 0.02%; P = 3.15 × 10−7). Conclusion: Our results indicate that variants in genes involved in nutrient metabolism and obesity are associated with macronutrient consumption in humans. Trials related to this study were registered at clinicaltrials.gov as NCT00005131 (Atherosclerosis Risk in Communities), NCT00005133 (Cardiovascular Health Study), NCT00005136 (Family Heart Study), NCT00005121 (Framingham Heart Study), NCT00083369 (Genetic and Environmental Determinants of Triglycerides), NCT01331512 (InCHIANTI Study), and NCT00005487 (Multi-Ethnic Study of Atherosclerosis).
The New England Journal of Medicine | 2015
Christopher P. Nelson; Stephen E. Hamby; Danish Saleheen; Jenna C Hopewell; Lingyao Zeng; Themistocles L. Assimes; Stavroula Kanoni; Christina Willenborg; Stephen Burgess; Philippe Amouyel; Sonia S. Anand; Stefan Blankenberg; Bernhard O. Boehm; Robert Clarke; Rory Collins; George Dedoussis; Martin Farrall; Paul W. Franks; Leif Groop; Alistair S. Hall; Anders Hamsten; Christian Hengstenberg; G. Kees Hovingh; Erik Ingelsson; Sekar Kathiresan; Frank Kee; Inke R. König; Jaspal S. Kooner; Terho Lehtimäki; W. März
BACKGROUND The nature and underlying mechanisms of an inverse association between adult height and the risk of coronary artery disease (CAD) are unclear. METHODS We used a genetic approach to investigate the association between height and CAD, using 180 height-associated genetic variants. We tested the association between a change in genetically determined height of 1 SD (6.5 cm) with the risk of CAD in 65,066 cases and 128,383 controls. Using individual-level genotype data from 18,249 persons, we also examined the risk of CAD associated with the presence of various numbers of height-associated alleles. To identify putative mechanisms, we analyzed whether genetically determined height was associated with known cardiovascular risk factors and performed a pathway analysis of the height-associated genes. RESULTS We observed a relative increase of 13.5% (95% confidence interval [CI], 5.4 to 22.1; P<0.001) in the risk of CAD per 1-SD decrease in genetically determined height. There was a graded relationship between the presence of an increased number of height-raising variants and a reduced risk of CAD (odds ratio for height quartile 4 versus quartile 1, 0.74; 95% CI, 0.68 to 0.84; P<0.001). Of the 12 risk factors that we studied, we observed significant associations only with levels of low-density lipoprotein cholesterol and triglycerides (accounting for approximately 30% of the association). We identified several overlapping pathways involving genes associated with both development and atherosclerosis. CONCLUSIONS There is a primary association between a genetically determined shorter height and an increased risk of CAD, a link that is partly explained by the association between shorter height and an adverse lipid profile. Shared biologic processes that determine achieved height and the development of atherosclerosis may explain some of the association. (Funded by the British Heart Foundation and others.).
Diabetes | 2011
Adam Barker; Stephen J. Sharp; Nicholas J. Timpson; Nabila Bouatia-Naji; Nicole M. Warrington; Stavroula Kanoni; Lawrence J. Beilin; Soren Brage; Panos Deloukas; David Evans; Anders Grøntved; Neelam Hassanali; Debbie A. Lawlor; Cécile Lecoeur; Ruth J. F. Loos; Stephen J. Lye; Mark McCarthy; Trevor A. Mori; Ndeye Coumba Ndiaye; John P. Newnham; Ioanna Ntalla; Craig E. Pennell; Beate St Pourcain; Inga Prokopenko; Susan M. Ring; Naveed Sattar; Sophie Visvikis-Siest; George Dedoussis; Lyle J. Palmer; Philippe Froguel
OBJECTIVE To investigate whether associations of common genetic variants recently identified for fasting glucose or insulin levels in nondiabetic adults are detectable in healthy children and adolescents. RESEARCH DESIGN AND METHODS A total of 16 single nucleotide polymorphisms (SNPs) associated with fasting glucose were genotyped in six studies of children and adolescents of European origin, including over 6,000 boys and girls aged 9–16 years. We performed meta-analyses to test associations of individual SNPs and a weighted risk score of the 16 loci with fasting glucose. RESULTS Nine loci were associated with glucose levels in healthy children and adolescents, with four of these associations reported in previous studies and five reported here for the first time (GLIS3, PROX1, SLC2A2, ADCY5, and CRY2). Effect sizes were similar to those in adults, suggesting age-independent effects of these fasting glucose loci. Children and adolescents carrying glucose-raising alleles of G6PC2, MTNR1B, GCK, and GLIS3 also showed reduced β-cell function, as indicated by homeostasis model assessment of β-cell function. Analysis using a weighted risk score showed an increase [β (95% CI)] in fasting glucose level of 0.026 mmol/L (0.021–0.031) for each unit increase in the score. CONCLUSIONS Novel fasting glucose loci identified in genome-wide association studies of adults are associated with altered fasting glucose levels in healthy children and adolescents with effect sizes comparable to adults. In nondiabetic adults, fasting glucose changes little over time, and our results suggest that age-independent effects of fasting glucose loci contribute to long-term interindividual differences in glucose levels from childhood onwards.
Diabetes | 2011
Stavroula Kanoni; Jennifer A. Nettleton; Marie-France Hivert; Zheng Ye; Frank J. A. van Rooij; Dmitry Shungin; Emily Sonestedt; Julius S. Ngwa; Mary K. Wojczynski; Rozenn N. Lemaitre; Stefan Gustafsson; Jennifer S. Anderson; Toshiko Tanaka; George Hindy; Georgia Saylor; Frida Renström; Amanda J. Bennett; Cornelia M. van Duijn; Jose C. Florez; Caroline S. Fox; Albert Hofman; Ron C. Hoogeveen; Denise K. Houston; Frank B. Hu; Paul F. Jacques; Ingegerd Johansson; Lars Lind; Yongmei Liu; Nicola M. McKeown; Jose M. Ordovas
OBJECTIVE Many genetic variants have been associated with glucose homeostasis and type 2 diabetes in genome-wide association studies. Zinc is an essential micronutrient that is important for β-cell function and glucose homeostasis. We tested the hypothesis that zinc intake could influence the glucose-raising effect of specific variants. RESEARCH DESIGN AND METHODS We conducted a 14-cohort meta-analysis to assess the interaction of 20 genetic variants known to be related to glycemic traits and zinc metabolism with dietary zinc intake (food sources) and a 5-cohort meta-analysis to assess the interaction with total zinc intake (food sources and supplements) on fasting glucose levels among individuals of European ancestry without diabetes. RESULTS We observed a significant association of total zinc intake with lower fasting glucose levels (β-coefficient ± SE per 1 mg/day of zinc intake: −0.0012 ± 0.0003 mmol/L, summary P value = 0.0003), while the association of dietary zinc intake was not significant. We identified a nominally significant interaction between total zinc intake and the SLC30A8 rs11558471 variant on fasting glucose levels (β-coefficient ± SE per A allele for 1 mg/day of greater total zinc intake: −0.0017 ± 0.0006 mmol/L, summary interaction P value = 0.005); this result suggests a stronger inverse association between total zinc intake and fasting glucose in individuals carrying the glucose-raising A allele compared with individuals who do not carry it. None of the other interaction tests were statistically significant. CONCLUSIONS Our results suggest that higher total zinc intake may attenuate the glucose-raising effect of the rs11558471 SLC30A8 (zinc transporter) variant. Our findings also support evidence for the association of higher total zinc intake with lower fasting glucose levels.
Diabetic Medicine | 2011
Adam Barker; Stephen J. Sharp; Nicholas J. Timpson; Nabila Bouatia-Naji; Nicole M. Warrington; Stavroula Kanoni; Lawrence J. Beilin; Soren Brage; Panos Deloukas; David Evans; Anders Grøntved; Neelam Hassanali; Debbie A. Lawlor; Cécile Lecoeur; Ruth J. F. Loos; Stephen J. Lye; Mark McCarthy; Trevor A. Mori; Ndeye Coumba Ndiaye; John P. Newnham; Ioanna Ntalla; Craig E. Pennell; M U B St Pourcain; Inga Prokopenko; Susan M. Ring; Naveed Sattar; Sophie Visvikis-Siest; George Dedoussis; Lyle J. Palmer; Philippe Froguel
OBJECTIVE To investigate whether associations of common genetic variants recently identified for fasting glucose or insulin levels in nondiabetic adults are detectable in healthy children and adolescents. RESEARCH DESIGN AND METHODS A total of 16 single nucleotide polymorphisms (SNPs) associated with fasting glucose were genotyped in six studies of children and adolescents of European origin, including over 6,000 boys and girls aged 9–16 years. We performed meta-analyses to test associations of individual SNPs and a weighted risk score of the 16 loci with fasting glucose. RESULTS Nine loci were associated with glucose levels in healthy children and adolescents, with four of these associations reported in previous studies and five reported here for the first time (GLIS3, PROX1, SLC2A2, ADCY5, and CRY2). Effect sizes were similar to those in adults, suggesting age-independent effects of these fasting glucose loci. Children and adolescents carrying glucose-raising alleles of G6PC2, MTNR1B, GCK, and GLIS3 also showed reduced β-cell function, as indicated by homeostasis model assessment of β-cell function. Analysis using a weighted risk score showed an increase [β (95% CI)] in fasting glucose level of 0.026 mmol/L (0.021–0.031) for each unit increase in the score. CONCLUSIONS Novel fasting glucose loci identified in genome-wide association studies of adults are associated with altered fasting glucose levels in healthy children and adolescents with effect sizes comparable to adults. In nondiabetic adults, fasting glucose changes little over time, and our results suggest that age-independent effects of fasting glucose loci contribute to long-term interindividual differences in glucose levels from childhood onwards.
Experimental Gerontology | 2008
Erminia Mariani; Simona Neri; Luca Cattini; Eugenio Mocchegiani; Marco Malavolta; George V. Dedoussis; Stavroula Kanoni; Lothar Rink; Jolanta Jajte; Andrea Facchini
Pro-inflammatory cytokine response and NK activity are controlled by the availability of zinc ion, whose intra-cellular transport is regulated by metallothioneins. In order to closely examine the importance of circulating zinc in the modulation of immune response during ageing, in the balance of Th2/Th1 equilibrium and finally in the reversibility of systemic low grade inflammation, we evaluated the changes occurring in plasma IL-6 and MCP-1 concentrations and NK lytic activity in a healthy low grade inflamed elderly population, following zinc-aspartate supplementation. In addition, we aimed to highlight the potential interaction among circulating zinc increments, changes in immunological parameters and +647 MT1a and -174 IL-6 polymorphic alleles. Thirty-nine healthy individuals (60-83 years) from the ZINCAGE cohort (previously typed for +647 MT1a and -174 IL-6 polymorphisms) were supplied with zinc-aspartate. Blood samples collected before and after supplementation underwent basal laboratory determinations (circulating zinc, albumin and C-reactive protein) and immunological studies (plasma IL-6 and MCP-1 and NK lytic activity). Zinc supplementation in subjects with low or borderline-normal circulating zinc increased the concentration of this ion and modulated plasmatic IL-6 and MCP-1 as well as NK lytic activity. An interactive effect of polymorphic alleles of MT1a and IL-6 genes on zinc, IL-6, MCP-1 and NK activity was evidenced following supplementation, indicating the genetic background as one of the determinants for identifying groups of subjects that can take advantage of therapeutic intervention.
American Journal of Epidemiology | 2013
Jennifer A. Nettleton; Marie-France Hivert; Rozenn N. Lemaitre; Nicola M. McKeown; Dariush Mozaffarian; Toshiko Tanaka; Mary K. Wojczynski; Adela Hruby; Luc Djoussé; Julius S. Ngwa; Jack L. Follis; Maria Dimitriou; Andrea Ganna; Denise K. Houston; Stavroula Kanoni; Vera Mikkilä; Ani Manichaikul; Ioanna Ntalla; Frida Renström; Emily Sonestedt; Frank J. A. van Rooij; Stefania Bandinelli; Lawrence de Koning; Ulrika Ericson; Neelam Hassanali; Jessica C. Kiefte-de Jong; Kurt Lohman; Olli T. Raitakari; Constantina Papoutsakis; Per Sjögren
Whether loci that influence fasting glucose (FG) and fasting insulin (FI) levels, as identified by genome-wide association studies, modify associations of diet with FG or FI is unknown. We utilized data from 15 U.S. and European cohort studies comprising 51,289 persons without diabetes to test whether genotype and diet interact to influence FG or FI concentration. We constructed a diet score using study-specific quartile rankings for intakes of whole grains, fish, fruits, vegetables, and nuts/seeds (favorable) and red/processed meats, sweets, sugared beverages, and fried potatoes (unfavorable). We used linear regression within studies, followed by inverse-variance-weighted meta-analysis, to quantify 1) associations of diet score with FG and FI levels and 2) interactions of diet score with 16 FG-associated loci and 2 FI-associated loci. Diet score (per unit increase) was inversely associated with FG (β = -0.004 mmol/L, 95% confidence interval: -0.005, -0.003) and FI (β = -0.008 ln-pmol/L, 95% confidence interval: -0.009, -0.007) levels after adjustment for demographic factors, lifestyle, and body mass index. Genotype variation at the studied loci did not modify these associations. Healthier diets were associated with lower FG and FI concentrations regardless of genotype at previously replicated FG- and FI-associated loci. Studies focusing on genomic regions that do not yield highly statistically significant associations from main-effect genome-wide association studies may be more fruitful in identifying diet-gene interactions.