Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stavroula Kontoe is active.

Publication


Featured researches published by Stavroula Kontoe.


Canadian Geotechnical Journal | 2008

Case study on seismic tunnel response

Stavroula Kontoe; L. Zdravkovic; D. M. Potts; Christopher O. MenkitiC.O. Menkiti

This paper presents a case study of the Bolu highway twin tunnels that experienced a wide range of damage during the 1999 Duzce earthquake in Turkey. Attention is focused on a particular section of the left tunnel that was still under construction when the earthquake struck and that experienced extensive damage during the seismic event. Static and dynamic plane-strain finite element (FE) analyses were undertaken to investigate the seismic tunnel response at two sections and to compare the results with the post-earthquake field observations. The predicted maximum total hoop stress during the earthquake exceeds the strength of shotcrete in the examined section. The occurrence of lining failure and the predicted failure mechanism compare very favourably with field observations. The results of the dynamic FE analyses are also compared with those obtained by simplified methodologies (i.e., two analytical elastic solutions and quasi-static elastoplastic FE analyses). For this example, the quasi-static racking a...


Bulletin of the Seismological Society of America | 2016

International Benchmark on Numerical Simulations for 1D, Nonlinear Site Response (PRENOLIN): Verification Phase Based on Canonical Cases

Julie Régnier; Luis‐Fabian Bonilla; Pierre-Yves Bard; Etienne Bertrand; Fabrice Hollender; Hiroshi Kawase; Deborah Sicilia; Pedro Arduino; A. Amorosi; Domniki Asimaki; Daniela Boldini; Long Chen; Anna Chiaradonna; Florent Demartin; Marco Ebrille; Ahmed Elgamal; Gaetano Falcone; Evelyne Foerster; Sebastiano Foti; Evangelia Garini; George Gazetas; Céline Gélis; Alborz Ghofrani; Amalia Giannakou; James R. Gingery; Nathalie Glinsky; Joseph Harmon; Youssef M. A. Hashash; Susumu Iai; Boris Jeremić

PREdiction of NOn‐LINear soil behavior (PRENOLIN) is an international benchmark aiming to test multiple numerical simulation codes that are capable of predicting nonlinear seismic site response with various constitutive models. One of the objectives of this project is the assessment of the uncertainties associated with nonlinear simulation of 1D site effects. A first verification phase (i.e., comparison between numerical codes on simple idealistic cases) will be followed by a validation phase, comparing the predictions of such numerical estimations with actual strong‐motion recordings obtained at well‐known sites. The benchmark presently involves 21 teams and 23 different computational codes. We present here the main results of the verification phase dealing with simple cases. Three different idealized soil profiles were tested over a wide range of shear strains with different input motions and different boundary conditions at the sediment/bedrock interface. A first iteration focusing on the elastic and viscoelastic cases was proved to be useful to ensure a common understanding and to identify numerical issues before pursuing the nonlinear modeling. Besides minor mistakes in the implementation of input parameters and output units, the initial discrepancies between the numerical results can be attributed to (1) different understanding of the expression “input motion” in different communities, and (2) different implementations of material damping and possible numerical energy dissipation. The second round of computations thus allowed a convergence of all teams to the Haskell–Thomson analytical solution in elastic and viscoelastic cases. For nonlinear computations, we investigate the epistemic uncertainties related only to wave propagation modeling using different nonlinear constitutive models. Such epistemic uncertainties are shown to increase with the strain level and to reach values around 0.2 (log_(10) scale) for a peak ground acceleration of 5  m/s^2 at the base of the soil column, which may be reduced by almost 50% when the various constitutive models used the same shear strength and damping implementation.


Bulletin of the Seismological Society of America | 2018

PRENOLIN: International Benchmark on 1D Nonlinear Site‐Response Analysis—Validation Phase Exercise

Julie Régnier; Luis Fabian Bonilla; Pierre Yves Bard; Etienne Bertrand; Fabrice Hollender; Hiroshi Kawase; Deborah Sicilia; Pedro Arduino; A. Amorosi; Dominiki Asimaki; Daniela Boldini; Long Chen; Anna Chiaradonna; Florent Demartin; Ahmed Elgamal; Gaetano Falcone; Evelyne Foerster; Sebastiano Foti; Evangelia Garini; George Gazetas; Céline Gélis; Alborz Ghofrani; Amalia Giannakou; James R. Gingery; Nathalie Glinsky; Joseph Harmon; Youssef M. A. Hashash; Susumu Iai; Steve Kramer; Stavroula Kontoe

This article presents the main results of the validation phase of the PRENOLIN project. PRENOLIN is an international benchmark on 1D nonlinear (NL) site‐response analysis. This project involved 19 teams with 23 different codes tested. It was divided into two phases; with the first phase verifying the numerical solution of these codes on idealized soil profiles using simple signals and real seismic records. The second phase described in this article referred to code validation for the analysis of real instrumented sites. This validation phase was performed on two sites (KSRH10 and Sendai) of the Japanese strong‐motion networks KiK‐net and Port and Airport Research Institute (PARI), respectively, with a pair of accelerometers at surface and depth. Extensive additional site characterizations were performed at both sites involving in situ and laboratory measurements of the soil properties. At each site, sets of input motions were selected to represent different peak ground acceleration (PGA) and frequency content. It was found that the code‐to‐code variability given by the standard deviation of the computed surface‐response spectra is around 0.1 (in log10 scale) regardless of the site and input motions. This indicates a quite large influence of the numerical methods on site‐effect assessment and more generally on seismic hazard. Besides, it was observed that site‐specific measurements are of primary importance for defining the input data in site‐response analysis. The NL parameters obtained from the laboratory measurements should be compared with curves coming from the literature. Finally, the lessons learned from this exercise are synthesized, resulting also in a few recommendations for future benchmarking studies, and the use of 1D NL, total stress site‐response analysis.


Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science | 2016

Vertical ground motion and its effects on liquefaction resistance of fully saturated sand deposits

Vasiliki Tsaparli; Stavroula Kontoe; David M.G. Taborda; David M. Potts

Soil liquefaction has been extensively investigated over the years with the aim to understand its fundamental mechanism and successfully remediate it. Despite the multi-directional nature of earthquakes, the vertical seismic component is largely neglected, as it is traditionally considered to be of much lower amplitude than the components in the horizontal plane. The 2010–2011 Canterbury earthquake sequence in New Zealand is a prime example that vertical accelerations can be of significant magnitude, with peak amplitudes well exceeding their horizontal counterparts. As research on this topic is very limited, there is an emerging need for a more thorough investigation of the vertical motion and its effect on soil liquefaction. As such, throughout this study, uni- and bidirectional finite-element analyses are carried out focusing on the influence of the input vertical motion on sand liquefaction. The effects of the frequency content of the input motion, of the depth of the deposit and of the hydraulic regime, using variable permeability, are investigated and exhaustively discussed. The results indicate that the usual assumption of linear elastic response when compressional waves propagate in a fully saturated sand deposit does not always hold true. Most importantly post-liquefaction settlements appear to be increased when the vertical component is included in the analysis.


Journal of Earthquake Engineering | 2018

The Effects of Dam–Reservoir Interaction on the Nonlinear Seismic Response of Earth Dams

Loizos Pelecanos; Stavroula Kontoe; Lidija Zdravković

ABSTRACT The objective of this study is to investigate the effects of dam–reservoir interaction (DRI) on the nonlinear seismic response of earth dams. Although DRI effects have for long been considered as insignificant for earth dams, that conclusion was mainly based on linear elastic investigations which focused only on the acceleration response of the crest without examining the seismic shear stresses and strains within the dam body. The present study explores further the impact of DRI focusing on the nonlinear behavior of earth dams. The effects of reservoir hydrodynamic pressures are investigated in terms of both seismic dam accelerations and nonlinear dynamic soil behavior (seismic shear stresses and strains). It is shown that although dam crest accelerations are indeed insensitive to DRI, the stress and strain development within the dam body can be significantly underestimated if DRI is ignored.


6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering | 2017

Steady-state and transient dynamic visco-elastic response of concrete and earth dams due to dam-reservoir interaction

Loizos Pelecanos; Stavroula Kontoe; Lidija Zdravkovic

The aim of this study is to investigate the effects of dam–reservoir interaction on the dynamic response of dams. Both thin rectangular concrete cantilever and large trapezoidal earth dams are considered with empty and full reservoir. It has recently been shown by Pelecanos et al. [32] that the amplification of accelerations at the crest of the dam depends on the combinations of the frequency of the harmonic acceleration load and the fundamental frequencies of the dam and the reservoir. This study considers transient dynamic loading and selected scenarios of different combinations of the abovementioned frequencies are examined under random seismic acceleration load. It is shown that for certain cases the amplification of accelerations of the dam can be affected by the presence of the upstream reservoir. In general, thin rectangular concrete cantilever dams are found to be considerably more sensitive to dam–reservoir interaction than large trapezoidal earth dams. Therefore, this investigation examines the significance of dam–reservoir interaction and when this interaction should be taken into consideration or it could be neglected.


XVI ECSMGE Geotechnical Engineering for Infrastructure and Development | 2015

Numerical modelling of wave attenuation through soil

R. Colombero; Stavroula Kontoe; Sebastiano Foti; David M. Potts

The nature-inspired concept of self-healing materials in construction is relatively new and has recently attracted significant attention as this could bring about substantial savings in maintenance costs as well as enhance the durability and serviceability and improve the safety of our structures and infrastructure. Much of the research and applications to date has focused on concrete, for structural applications, and on asphalt, with significant advances being made. However, to date no attention has been given to the incorporation of self-healing concepts in geotechnical and geo-environmental applications. This includes the use of concrete and other stabilising agents in foundations and other geotechnical structures, grouts, grouted soil systems, soil-cement systems and slurry walls for ground improvement and land remediation applications. The recently established Materials for Life (M4L) project funded by EPSRC has initiated research activities in the UK focussing on those applications. The project involves the development and integration of the use of microcapsules, biological agents, shape memory polymers and vascular networks as healing systems. The authors are exploring development of self-healing systems using mineral admixtures, microencapsulation and bio-cementation applications. The paper presents an overview of those initiatives to date and potential applications and presents some relevant preliminary results.By contrast to studies in petroleum geology and, despite their world-wide occurrence, geotechnical studies of ancient fluvial sediments are rare. This paper introduces the main characteristics of these sediments by reference to a classic UK example. Attention is then drawn to a number of major overseas examples where, although the principal features can be recognised, large differences arise as a result of factors such as the tectonic setting, the volume and mineralogy of the source material and the climate at the time the sediments were deposited. The first, over-riding problem for their engineering evaluation comes during the site investigation phase with the difficulty of deducing the geological structure and distribution of the widely varying lithologies.Strain accumulation in granular soils due to dynamic loading is investigated through long term cyclic triaxial tests and cyclic triaxial tests according to ASTM D 3999-91. Soil parameters, test equipment and loading conditions have a significant influence on strain accumulation, therefore a parameterization of the silica sand and a description of the cyclic triaxial test device are explained. Cyclic triaxial tests are performed and test results are presented illustrating the evolution of Young’s modulus during long term cyclic loading. The influence of the width of the stress-strain loop and the initial void ratio on strain accumulation is investigated and validated with existing accumulation models. The usefulness of Miner’s rule on sand subjected to cyclic loading is demonstrated by two tests with different packages of loading cycles.


Computers and Geotechnics | 2008

An assessment of time integration schemes for dynamic geotechnical problems

Stavroula Kontoe; L. Zdravkovic; D. M. Potts


Geotechnique | 2011

On the relative merits of simple and advanced constitutive models in dynamic analysis of tunnels

Stavroula Kontoe; Lidija Zdravkovic; D. M. Potts; C.O. Menkiti


Soil Dynamics and Earthquake Engineering | 2014

Numerical validation of analytical solutions and their use for equivalent-linear seismic analysis of circular tunnels

Stavroula Kontoe; V. Avgerinos; D Potts

Collaboration


Dive into the Stavroula Kontoe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. M. Potts

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Han

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rm Buckley

Imperial College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge