Steeve Lowenski
ANSES
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steeve Lowenski.
Viruses | 2013
Emilie Donadieu; Céline Bahuon; Steeve Lowenski; Stéphan Zientara; Muriel Coulpier; Sylvie Lecollinet
West Nile virus (WNV) is a neurotropic flavivirus that cycles between mosquitoes and birds but that can also infect humans, horses, and other vertebrate animals. In most humans, WNV infection remains subclinical. However, 20%–40% of those infected may develop WNV disease, with symptoms ranging from fever to meningoencephalitis. A large variety of WNV strains have been described worldwide. Based on their genetic differences, they have been classified into eight lineages; the pathogenic strains belong to lineages 1 and 2. Ten years ago, Beasley et al. (2002) found that dramatic differences exist in the virulence and neuroinvasion properties of lineage 1 and lineage 2 WNV strains. Further insights on how WNV interacts with its hosts have recently been gained; the virus acts either at the periphery or on the central nervous system (CNS), and these observed differences could help explain the differential virulence and neurovirulence of WNV strains. This review aims to summarize the current state of knowledge on factors that trigger WNV dissemination and CNS invasion as well as on the inflammatory response and CNS damage induced by WNV. Moreover, we will discuss how WNV strains differentially interact with the innate immune system and CNS cells, thus influencing WNV pathogenesis.
BioMed Research International | 2015
C. Beck; Philippe Desprès; Sylvie Paulous; Jessica Vanhomwegen; Steeve Lowenski; Norbert Nowotny; Benoit Durand; A. Garnier; Sandra Blaise-Boisseau; Edouard Guitton; Takashi Yamanaka; Stéphan Zientara; Sylvie Lecollinet
West Nile virus (WNV), Japanese encephalitis virus (JEV), and tick-borne encephalitis virus (TBEV) are flaviviruses responsible for severe neuroinvasive infections in humans and horses. The confirmation of flavivirus infections is mostly based on rapid serological tests such as enzyme-linked immunosorbent assays (ELISAs). These tests suffer from poor specificity, mainly due to antigenic cross-reactivity among flavivirus members. Robust diagnosis therefore needs to be validated through virus neutralisation tests (VNTs) which are time-consuming and require BSL3 facilities. The flavivirus envelope (E) glycoprotein ectodomain is composed of three domains (D) named DI, DII, and DIII, with EDIII containing virus-specific epitopes. In order to improve the serological differentiation of flavivirus infections, the recombinant soluble ectodomain of WNV E (WNV.sE) and EDIIIs (rEDIIIs) of WNV, JEV, and TBEV were synthesised using the Drosophila S2 expression system. Purified antigens were covalently bonded to fluorescent beads. The microspheres coupled to WNV.sE or rEDIIIs were assayed with about 300 equine immune sera from natural and experimental flavivirus infections and 172 nonimmune equine sera as negative controls. rEDIII-coupled microspheres captured specific antibodies against WNV, TBEV, or JEV in positive horse sera. This innovative multiplex immunoassay is a powerful alternative to ELISAs and VNTs for veterinary diagnosis of flavivirus-related diseases.
Vector-borne and Zoonotic Diseases | 2013
Marion Vittecoq; Sylvie Lecollinet; Elsa Jourdain; Frédéric Thomas; Thomas Blanchon; Audrey Arnal; Steeve Lowenski; Michel Gauthier-Clerc
In recent years, the number of West Nile virus (WNV) cases reported in horses and humans has increased dramatically throughout the Mediterranean basin. Furthermore, the emergence of Usutu virus (USUV) in Austria in 2001, and its subsequent expansion to Hungary, Spain, Italy, Switzerland, the United Kingdom, and Germany, has given added cause for concern regarding the impact of the spread of flaviviruses on human and animal health in western Europe. Despite frequent detection of WNV and USUV cases in neighboring countries, no case of WNV has been detected in France since 2006 and USUV has never been reported. However, recent investigations focused on detecting the circulation of flaviviruses in France are lacking. We investigated the circulation of WNV and USUV viruses in wild birds in southern France on the basis of a serological survey conducted on a sentinel species, the magpie (Pica pica), in the Camargue area from November, 2009, to December, 2010. We detected WNV-neutralizing antibodies at a high titer (160) in a second-year bird showing recent exposure to WNV, although no WNV case has been detected in humans or in horses since 2004 in the Camargue. In addition, we observed low titers (10 or 20) of USUV-specific antibodies in six magpies, two of which were also seropositive for WNV. Such low titers do not give grounds for concluding that these birds had been exposed to USUV; cross-reactions at low titers may occur between antigenically closely related flaviviruses. But these results urge for further investigations into the circulation of flaviviruses in southern France. They also emphasize the necessity of undertaking epidemiological studies on a long-term basis, rather than over short periods following public health crises, to gain insight into viral dynamics within natural reservoirs.
Emerging Infectious Diseases | 2016
Sylvie Lecollinet; Yannick Blanchard; Christine Manson; Steeve Lowenski; Eve Laloy; Hélène Quenault; Fabrice Touzain; Pierrick Lucas; Cyril Eraud; Céline Bahuon; Stéphan Zientara; Cécile Beck; Anouk Decors
References 1. Yokota S, Sato T, Okubo T, Ohkoshi Y, Okabayashi T, Kuwahara O, et al. Prevalence of fluoroquinolone-resistant Escherichia coli O25:H4-ST131 (CTX-M-15-nonproducing) strains isolated in Japan. Chemotherapy. 2012;58:52–9. http://dx.doi.org/10.1159/000336129 2. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing (M100-S25). Wayne (PA): The Institute; 2015. 3. Colpan A, Johnston B, Porter S, Clabots C, Anway R, Thao L, et al.; VICTORY (Veterans Influence of Clonal Types on Resistance: Year 2011) Investigators. Escherichia coli sequence type 131 (ST131) subclone H30 as an emergent multidrug-resistant pathogen among US veterans. Clin Infect Dis. 2013;57:1256–65. http://dx.doi.org/10.1093/cid/cit503 4. Price LB, Johnson JR, Aziz M, Clabots C, Johnston B, Tchesnokova V, et al. The epidemic of extended-spectrumβ-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx. mBio. 2013;4: e00377–13. http://dx.doi.org/10.1128/mBio.00377-13 5. Lau SH, Reddy S, Cheesbrough J, Bolton FJ, Willshaw G, Cheasty T, et al. Major uropathogenic Escherichia coli strain isolated in the northwest of England identified by multilocus sequence typing. J Clin Microbiol. 2008;46:1076–80. http://dx.doi.org/10.1128/JCM.02065-07 6. Peirano G, Schreckenberger PC, Pitout JD. Characteristics of NDM-1-producing Escherichia coli isolates that belong to the successful and virulent clone ST131. Antimicrob Agents Chemother. 2011;55:2986–8. http://dx.doi.org/10.1128/AAC.01763-10 7. Morris D, Boyle F, Ludden C, Condon I, Hale J, O’Connell N, et al. Production of KPC-2 carbapenemase by an Escherichia coli clinical isolate belonging to the international ST131 clone. Antimicrob Agents Chemother. 2011;55:4935–6. http://dx.doi.org/10.1128/AAC.05127-11 8. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16:161–8. http://dx.doi.org/10.1016/S1473-3099(15)00424-7 9. Xavier BB, Lammens C, Ruhal R, Kumar-Singh S, Butaye P, Goossens H, et al. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, 2016. Euro Surveill. 2016;21. http://dx.doi.org/10.2807/1560-7917. ES.2016.21.2730280
PLOS ONE | 2012
Céline Bahuon; Philippe Desprès; Nathalie Pardigon; Jean-Jacques Panthier; Nathalie Cordonnier; Steeve Lowenski; Jennifer Richardson; Stéphan Zientara; Sylvie Lecollinet
Infectious clones of West Nile virus (WNV) have previously been generated and used to decipher the role of viral proteins in WNV virulence. The majority of molecular clones obtained to date have been derived from North American, Australian, or African isolates. Here, we describe the construction of an infectious cDNA clone of a Mediterranean WNV strain, IS-98-ST1. We characterized the biological properties of the recovered recombinant virus in cell culture and in mice. The growth kinetics of recombinant and parental WNV were similar in Vero cells. Moreover, the phenotype of recombinant and parental WNV was indistinguishable as regards viremia, viral load in the brain, and mortality in susceptible and resistant mice. Finally, the pathobiology of the infectious clone was examined in embryonated chicken eggs. The capacity of different WNV strains to replicate in embryonated chicken eggs closely paralleled their ability to replicate in mice, suggesting that inoculation of embryonated chicken eggs could provide a practical in vivo model for the study of WNV pathogenesis. In conclusion, the IS-98-ST1 infectious clone will allow assessment of the impact of selected mutations and novel genomic changes appearing in emerging European strains pathogenicity and endemic or epidemic potential. This will be invaluable in the context of an increasing number of outbreaks and enhanced severity of infections in the Mediterranean basin and Eastern Europe.
Epidemiology and Infection | 2016
Benoit Durand; H. Haskouri; Steeve Lowenski; Nathalie Vachiery; C. Beck; Sylvie Lecollinet
A serosurvey of 349 military working horses and 231 military working dogs was conducted in ten sites in Morocco in 2012. This survey revealed a high level of exposure of these animals to flaviviruses: seroprevalence rates of 60% in horses and of 62% in dogs were observed using a competitive West Nile virus (WNV) enzyme-linked immunosorbent assay (cELISA). Seroneutralization test results showed that the majority of cELISA-positive results were due to exposure to WNV. Further assays conducted in vaccinated horses with a DIVA (Differentiating Infected from Vaccinated Animals) test indicated that anti-WNV antibodies had been stimulated through WNV natural infection. Moreover, in both species, seroneutralization tests suggested an exposure to Usutu virus (USUV). Data analysis did not show any significant difference of cELISA seropositivity risk between horses and dogs. Dogs may thus represent an interesting alternative to equines for the serological surveillance of WNV or USUV circulation, especially in areas where equine vaccination precludes passive surveillance (based on the detection of West Nile fever cases) in horses.
PLOS ONE | 2014
Angella Nzonza; Sylvie Lecollinet; Sophie Chat; Steeve Lowenski; Emilie Mérour; Stéphane Biacchesi; Michel Brémont
West Nile Virus (WNV) is a zoonotic mosquito-transmitted flavivirus that can infect and cause disease in mammals including humans. Our study aimed at developing a WNV vectored vaccine based on a fish Novirhabdovirus, the Viral Hemorrhagic Septicemia virus (VHSV). VHSV replicates at temperatures lower than 20°C and is naturally inactivated at higher temperatures. A reverse genetics system has recently been developed in our laboratory for VHSV allowing the addition of genes in the viral genome and the recovery of the respective recombinant viruses (rVHSV). In this study, we have generated rVHSV vectors bearing the complete WNV envelope gene (EWNV) (rVHSV-EWNV) or fragments encoding E subdomains (either domain III alone or domain III fused to domain II) (rVHSV-DIIIWNV and rVHSV-DII-DIIIWNV, respectively) in the VHSV genome between the N and P cistrons. With the objective to enhance the targeting of the EWNV protein or EWNV-derived domains to the surface of VHSV virions, Novirhadovirus G-derived signal peptide and transmembrane domain (SPG and TMG) were fused to EWNV at its amino and carboxy termini, respectively. By Western-blot analysis, electron microscopy observations or inoculation experiments in mice, we demonstrated that both the EWNV and the DIIIWNV could be expressed at the viral surface of rVHSV upon addition of SPG. Every constructs expressing EWNV fused to SPG protected 40 to 50% of BALB/cJ mice against WNV lethal challenge and specifically rVHSV-SPGEWNV induced a neutralizing antibody response that correlated with protection. Surprisingly, rVHSV expressing EWNV-derived domain III or II and III were unable to protect mice against WNV challenge, although these domains were highly incorporated in the virion and expressed at the viral surface. In this study we demonstrated that a heterologous glycoprotein and non membrane-anchored protein, can be efficiently expressed at the surface of rVHSV making this approach attractive to develop new vaccines against various pathogens.
BMC Veterinary Research | 2016
Ignacio García-Bocanegra; Jorge Paniagua; Ana Valeria Gutiérrez-Guzmán; Sylvie Lecollinet; Mariana Boadella; Antonio Arenas-Montes; David Cano-Terriza; Steeve Lowenski; Christian Gortázar; Ursula Höfle
Journal of Equine Veterinary Science | 2016
Sylvie Lecollinet; C. Beck; A. Leblond; C. Marcillaud-Pitel; Steeve Lowenski; C. Hary; N. Keck; J. Béfort; Benoit Durand; L. Bournez; L. Cavalerie; Stéphan Zientara
Virologie | 2018
Cécile Beck; Gaelle Gonzalez; Anouk Decors; Karin Lemberger; Steeve Lowenski; Marine Dumarest; Sylvie Lecollinet