Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan A. Haas is active.

Publication


Featured researches published by Stefan A. Haas.


Science | 2008

A Global View of Gene Activity and Alternative Splicing by Deep Sequencing of the Human Transcriptome

Marc Sultan; Marcel H. Schulz; Hugues Richard; Alon Magen; Andreas Klingenhoff; Matthias Scherf; Martin Seifert; Tatjana Borodina; Aleksey Soldatov; Dmitri Parkhomchuk; Dominic Schmidt; Sean O'Keeffe; Stefan A. Haas; Martin Vingron; Hans Lehrach; Marie-Laure Yaspo

The functional complexity of the human transcriptome is not yet fully elucidated. We report a high-throughput sequence of the human transcriptome from a human embryonic kidney and a B cell line. We used shotgun sequencing of transcripts to generate randomly distributed reads. Of these, 50% mapped to unique genomic locations, of which 80% corresponded to known exons. We found that 66% of the polyadenylated transcriptome mapped to known genes and 34% to nonannotated genomic regions. On the basis of known transcripts, RNA-Seq can detect 25% more genes than can microarrays. A global survey of messenger RNA splicing events identified 94,241 splice junctions (4096 of which were previously unidentified) and showed that exon skipping is the most prevalent form of alternative splicing.


Nature Genetics | 2012

Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer

Martin Peifer; Lynnette Fernandez-Cuesta; Martin L. Sos; Julie George; Danila Seidel; Lawryn H. Kasper; Dennis Plenker; Frauke Leenders; Ruping Sun; Thomas Zander; Roopika Menon; Mirjam Koker; Ilona Dahmen; Christian Müller; Vincenzo Di Cerbo; Hans Ulrich Schildhaus; Janine Altmüller; Ingelore Baessmann; Christian Becker; Bram De Wilde; Jo Vandesompele; Diana Böhm; Sascha Ansén; Franziska Gabler; Ines Wilkening; Stefanie Heynck; Johannes M. Heuckmann; Xin Lu; Scott L. Carter; Kristian Cibulskis

Small-cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor prognosis. We sequenced 29 SCLC exomes, 2 genomes and 15 transcriptomes and found an extremely high mutation rate of 7.4 ± 1 protein-changing mutations per million base pairs. Therefore, we conducted integrated analyses of the various data sets to identify pathogenetically relevant mutated genes. In all cases, we found evidence for inactivation of TP53 and RB1 and identified recurrent mutations in the CREBBP, EP300 and MLL genes that encode histone modifiers. Furthermore, we observed mutations in PTEN, SLIT2 and EPHA7, as well as focal amplifications of the FGFR1 tyrosine kinase gene. Finally, we detected many of the alterations found in humans in SCLC tumors from Tp53 and Rb1 double knockout mice. Our study implicates histone modification as a major feature of SCLC, reveals potentially therapeutically tractable genomic alterations and provides a generalizable framework for the identification of biologically relevant genes in the context of high mutational background.


Nature | 2011

Deep sequencing reveals 50 novel genes for recessive cognitive disorders

Hossein Najmabadi; Hao Hu; Masoud Garshasbi; Tomasz Zemojtel; Seyedeh Sedigheh Abedini; Wei Chen; Masoumeh Hosseini; Farkhondeh Behjati; Stefan A. Haas; Payman Jamali; Agnes Zecha; Marzieh Mohseni; Lucia Püttmann; Leyla Nouri Vahid; Corinna Jensen; Lia Abbasi Moheb; Melanie Bienek; Farzaneh Larti; Ines Mueller; Robert Weissmann; Hossein Darvish; Klaus Wrogemann; Valeh Hadavi; Bettina Lipkowitz; Sahar Esmaeeli-Nieh; Dagmar Wieczorek; Roxana Kariminejad; Saghar Ghasemi Firouzabadi; Monika Cohen; Zohreh Fattahi

Common diseases are often complex because they are genetically heterogeneous, with many different genetic defects giving rise to clinically indistinguishable phenotypes. This has been amply documented for early-onset cognitive impairment, or intellectual disability, one of the most complex disorders known and a very important health care problem worldwide. More than 90 different gene defects have been identified for X-chromosome-linked intellectual disability alone, but research into the more frequent autosomal forms of intellectual disability is still in its infancy. To expedite the molecular elucidation of autosomal-recessive intellectual disability, we have now performed homozygosity mapping, exon enrichment and next-generation sequencing in 136 consanguineous families with autosomal-recessive intellectual disability from Iran and elsewhere. This study, the largest published so far, has revealed additional mutations in 23 genes previously implicated in intellectual disability or related neurological disorders, as well as single, probably disease-causing variants in 50 novel candidate genes. Proteins encoded by several of these genes interact directly with products of known intellectual disability genes, and many are involved in fundamental cellular processes such as transcription and translation, cell-cycle control, energy metabolism and fatty-acid synthesis, which seem to be pivotal for normal brain development and function.


Cell | 2015

Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions

Darío G. Lupiáñez; Katerina Kraft; Verena Heinrich; Peter Krawitz; Francesco Brancati; Eva Klopocki; Denise Horn; Hülya Kayserili; John M. Opitz; Renata Laxova; Fernando Santos-Simarro; Brigitte Gilbert-Dussardier; Lars Wittler; Marina Borschiwer; Stefan A. Haas; Marco Osterwalder; Martin Franke; Bernd Timmermann; Jochen Hecht; Malte Spielmann; Axel Visel; Stefan Mundlos

Mammalian genomes are organized into megabase-scale topologically associated domains (TADs). We demonstrate that disruption of TADs can rewire long-range regulatory architecture and result in pathogenic phenotypes. We show that distinct human limb malformations are caused by deletions, inversions, or duplications altering the structure of the TAD-spanning WNT6/IHH/EPHA4/PAX3 locus. Using CRISPR/Cas genome editing, we generated mice with corresponding rearrangements. Both in mouse limb tissue and patient-derived fibroblasts, disease-relevant structural changes cause ectopic interactions between promoters and non-coding DNA, and a cluster of limb enhancers normally associated with Epha4 is misplaced relative to TAD boundaries and drives ectopic limb expression of another gene in the locus. This rewiring occurred only if the variant disrupted a CTCF-associated boundary domain. Our results demonstrate the functional importance of TADs for orchestrating gene expression via genome architecture and indicate criteria for predicting the pathogenicity of human structural variants, particularly in non-coding regions of the human genome.


Journal of Bacteriology | 2001

Global Analysis of the General Stress Response of Bacillus subtilis

Anja Petersohn; Matthias Brigulla; Stefan A. Haas; Jörg D. Hoheisel; Uwe Völker; Michael Hecker

Gene arrays containing all currently known open reading frames of Bacillus subtilis were used to examine the general stress response of Bacillus. By proteomics, transcriptional analysis, transposon mutagenesis, and consensus promoter-based screening, 75 genes had previously been described as sigma(B)-dependent general stress genes. The present gene array-based analysis confirmed 62 of these already known general stress genes and detected 63 additional genes subject to control by the stress sigma factor sigma(B). At least 24 of these 125 sigma(B)-dependent genes seemed to be subject to a second, sigma(B)-independent stress induction mechanism. Therefore, this transcriptional profiling revealed almost four times as many regulon members as the proteomic approach, but failure of confirmation of all known members of the sigma(B) regulon indicates that even this approach has not yet elucidated the entire regulon. Most of the sigma(B)-dependent general stress proteins are probably located in the cytoplasm, but 25 contain at least one membrane-spanning domain, and at least 6 proteins appear to be secreted. The functions of most of the newly described genes are still unknown. However, their classification as sigma(B)-dependent stress genes argues that their products most likely perform functions in stress management and help to provide the nongrowing cell with multiple stress resistance. A comprehensive screening program analyzing the multiple stress resistance of mutants with mutations in single stress genes is in progress. The first results of this program, showing the diminished salt resistance of yjbC and yjbD mutants compared to that of the wild type, are presented. Only a few new sigma(B)-dependent proteins with already known functions were found, among them SodA, encoding a superoxide dismutase. In addition to analysis of the sigma(B)-dependent general stress regulon, a comprehensive list of genes induced by heat, salt, or ethanol stress in a sigma(B)-independent manner is presented. Perhaps the most interesting of the sigma(B)-independent stress phenomena was the induction of the extracytoplasmic function sigma factor sigma(W) and its entire regulon by salt shock.


Nature | 2015

Comprehensive genomic profiles of small cell lung cancer

Julie George; Jing Shan Lim; Se Jin Jang; Yupeng Cun; Luka Ozretić; Gu Kong; Frauke Leenders; Xin Lu; Lynnette Fernandez-Cuesta; Graziella Bosco; Christian Müller; Ilona Dahmen; Nadine S. Jahchan; Kwon-Sik Park; Dian Yang; Anthony N. Karnezis; Dedeepya Vaka; Angela Torres; Maia Segura Wang; Jan O. Korbel; Roopika Menon; Sung-Min Chun; Deokhoon Kim; Matt Wilkerson; Neil Hayes; David Engelmann; Brigitte M. Pützer; Marc Bos; Sebastian Michels; Ignacija Vlasic

We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer.


Journal of Clinical Oncology | 2006

Customized Oligonucleotide Microarray Gene Expression–Based Classification of Neuroblastoma Patients Outperforms Current Clinical Risk Stratification

André Oberthuer; Frank Berthold; Patrick Warnat; Barbara Hero; Yvonne Kahlert; Rüdiger Spitz; Karen Ernestus; Rainer König; Stefan A. Haas; Roland Eils; Manfred Schwab; Benedikt Brors; Frank Westermann; Matthias Fischer

PURPOSE To develop a gene expression-based classifier for neuroblastoma patients that reliably predicts courses of the disease. PATIENTS AND METHODS Two hundred fifty-one neuroblastoma specimens were analyzed using a customized oligonucleotide microarray comprising 10,163 probes for transcripts with differential expression in clinical subgroups of the disease. Subsequently, the prediction analysis for microarrays (PAM) was applied to a first set of patients with maximally divergent clinical courses (n = 77). The classification accuracy was estimated by a complete 10-times-repeated 10-fold cross validation, and a 144-gene predictor was constructed from this set. This classifiers predictive power was evaluated in an independent second set (n = 174) by comparing results of the gene expression-based classification with those of risk stratification systems of current trials from Germany, Japan, and the United States. RESULTS The first set of patients was accurately predicted by PAM (cross-validated accuracy, 99%). Within the second set, the PAM classifier significantly separated cohorts with distinct courses (3-year event-free survival [EFS] 0.86 +/- 0.03 [favorable; n = 115] v 0.52 +/- 0.07 [unfavorable; n = 59] and 3-year overall survival 0.99 +/- 0.01 v 0.84 +/- 0.05; both P < .0001) and separated risk groups of current neuroblastoma trials into subgroups with divergent outcome (NB2004: low-risk 3-year EFS 0.86 +/- 0.04 v 0.25 +/- 0.15, P < .0001; intermediate-risk 1.00 v 0.57 +/- 0.19, P = .018; high-risk 0.81 +/- 0.10 v 0.56 +/- 0.08, P = .06). In a multivariate Cox regression model, the PAM predictor classified patients of the second set more accurately than risk stratification of current trials from Germany, Japan, and the United States (P < .001; hazard ratio, 4.756 [95% CI, 2.544 to 8.893]). CONCLUSION Integration of gene expression-based class prediction of neuroblastoma patients may improve risk estimation of current neuroblastoma trials.


The EMBO Journal | 2005

Intronic CA-repeat and CA-rich elements: a new class of regulators of mammalian alternative splicing

Jingyi Hui; Lee-Hsueh Hung; Monika Heiner; Silke Schreiner; Norma Neumüller; Gregor Reither; Stefan A. Haas; Albrecht Bindereif

We have recently identified an intronic polymorphic CA‐repeat region in the human endothelial nitric oxide synthase (eNOS) gene as an important determinant of the splicing efficiency, requiring specific binding of hnRNP L. Here, we analyzed the position requirements of this CA‐repeat element, which revealed its potential role in alternative splicing. In addition, we defined the RNA binding specificity of hnRNP L by SELEX: not only regular CA repeats are recognized with high affinity but also certain CA‐rich clusters. Therefore, we have systematically searched the human genome databases for CA‐repeat and CA‐rich elements associated with alternative 5′ splice sites (5′ss), followed by minigene transfection assays. Surprisingly, in several specific human genes that we tested, intronic CA RNA elements could function either as splicing enhancers or silencers, depending on their proximity to the alternative 5′ss. HnRNP L was detected specifically bound to these diverse CA elements. These data demonstrated that intronic CA sequences constitute novel and widespread regulatory elements of alternative splicing.


Nucleic Acids Research | 2010

Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments

Hugues Richard; Marcel H. Schulz; Marc Sultan; Asja Nürnberger; Sabine Schrinner; Daniela Balzereit; Emilie Dagand; Axel Rasche; Hans Lehrach; Martin Vingron; Stefan A. Haas; Marie-Laure Yaspo

Alternative splicing, polyadenylation of pre-messenger RNA molecules and differential promoter usage can produce a variety of transcript isoforms whose respective expression levels are regulated in time and space, thus contributing specific biological functions. However, the repertoire of mammalian alternative transcripts and their regulation are still poorly understood. Second-generation sequencing is now opening unprecedented routes to address the analysis of entire transcriptomes. Here, we developed methods that allow the prediction and quantification of alternative isoforms derived solely from exon expression levels in RNA-Seq data. These are based on an explicit statistical model and enable the prediction of alternative isoforms within or between conditions using any known gene annotation, as well as the relative quantification of known transcript structures. Applying these methods to a human RNA-Seq dataset, we validated a significant fraction of the predictions by RT-PCR. Data further showed that these predictions correlated well with information originating from junction reads. A direct comparison with exon arrays indicated improved performances of RNA-Seq over microarrays in the prediction of skipped exons. Altogether, the set of methods presented here comprehensively addresses multiple aspects of alternative isoform analysis. The software is available as an open-source R-package called Solas at http://cmb.molgen.mpg.de/2ndGenerationSequencing/Solas/.


Glia | 1996

Regulation of thrombospondin in the regenerating mouse facial motor nucleus

J. Carsten Möller; Michael A. Klein; Stefan A. Haas; Leonard L. Jones; Georg W. Kreutzberg; Gennadij Raivich

Thrombospondin (TSP) is a multifunctional extracellular matrix protein that plays a role in neuronal migration and axonal outgrowth in the developing central nervous system. In the current study we have examined the localization and regulation of TSP immunoreactivity (TSP‐IR) during neuronal regeneration in the axotomized facial motor nucleus using Western blotting and light and electron microscopy.

Collaboration


Dive into the Stefan A. Haas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jamel Chelly

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Marie Shaw

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hilde Van Esch

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Nicolas Lebrun

Paris Descartes University

View shared research outputs
Researchain Logo
Decentralizing Knowledge