Stefan A. Oelmeier
Karlsruhe Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefan A. Oelmeier.
Biotechnology and Bioengineering | 2011
Stefan A. Oelmeier; Florian Dismer; Jürgen Hubbuch
Aqueous two‐phase systems (ATPSs) as separation technique have regained substantial interest from the biotech industry. Biopharmaceutical companies faced with increasing product titers and stiffening economic competition reconsider ATPS as an alternative to chromatography. As the implementation of an ATPS is material, time, and labor intensive, a miniaturized and automated screening process would be beneficial. In this article such a method, its statistical evaluation, and its application to a biopharmaceutical separation task are shown. To speed up early stage ATPS profiling an automated application of the cloud‐point method for binodal determination was developed. PEG4000–PO4 binodals were measured automatically and manually and were found to be identical within the experimental error. The ATPS screening procedure was applied to a model system and an industrial separation task. PEG4000–PO4 systems at a protein concentration of 0.75 mg/mL were used. The influence of pH, NaCl addition, and tie line length was investigated. Lysozyme as model protein, two monoclonal antibodies, and a host cell protein pool were used. The method was found to yield partition coefficients identical to manually determined values for lysozyme. The monoclonal antibodies were shifted from the bottom into the upper phase by addition of NaCl. This shift occurred at lower NaCl concentration when the pH of the system was closer to the pI of the distributed protein. Addition of NaCl, increase in PEG4000 concentration and pH led to significant loss of the mAb due to precipitation. Capacity limitations of these systems were thus demonstrated. The chosen model systems allowed a reduction of up to 50% HCP with a recovery of greater than 95% of the target proteins. As these values might not be industrially relevant when compared to current chromatographic procedures, the developed screening procedure allows a fast evaluation of more suitable and optimized ATPS system for a given task. Biotechnol. Bioeng. 2011; 108:69–81.
Journal of Chromatography A | 2011
Patrick Diederich; Sigrid K. Hansen; Stefan A. Oelmeier; Bianca Stolzenberger; Jürgen Hubbuch
In process development and during commercial production of monoclonal antibodies (mAb) the monitoring of aggregate levels is obligatory. The standard assay for mAb aggregate quantification is based on size exclusion chromatography (SEC) performed on a HPLC system. Advantages hereof are high precision and simplicity, however, standard SEC methodology is very time consuming. With an average throughput of usually two samples per hour, it neither fits to high throughput process development (HTPD), nor is it applicable for purification process monitoring. We present a comparison of three different SEC columns for mAb-aggregate quantification addressing throughput, resolution, and reproducibility. A short column (150 mm) with sub-two micron particles was shown to generate high resolution (~1.5) and precision (coefficient of variation (cv)<1) with an assay time below 6 min. This column type was then used to combine interlaced sample injections with parallelization of two columns aiming for an absolute minimal assay time. By doing so, both lag times before and after the peaks of interest were successfully eliminated resulting in an assay time below 2 min. It was demonstrated that determined aggregate levels and precision of the throughput optimized SEC assay were equal to those of a single injection based assay. Hence, the presented methodology of parallel interlaced SEC (PI-SEC) represents a valuable tool addressing HTPD and process monitoring.
BMC Biophysics | 2012
Stefan A. Oelmeier; Florian Dismer; Jürgen Hubbuch
BackgroundMolecular Dynamics (MD) simulations are a promising tool to generate molecular understanding of processes related to the purification of proteins. Polyethylene glycols (PEG) of various length are commonly used in the production and purification of proteins. The molecular mechanisms behind PEG driven precipitation, aqueous two-phase formation or the effects of PEGylation are however still poorly understood.ResultsIn this paper, we ran MD simulations of single PEG molecules of variable length in explicitly simulated water. The resulting structures are in good agreement with experimentally determined 3D structures of PEG. The increase in surface hydrophobicity of PEG of longer chain length could be explained on an atomic scale. PEG-water interactions as well as aqueous two-phase formation in the presence of PO4 were found to be correlated to PEG surface hydrophobicity.ConclusionsWe were able to show that the taken MD simulation approach is capable of generating both structural data as well as molecule descriptors in agreement with experimental data. Thus, we are confident of having a good in silico representation of PEG.
Journal of Separation Science | 2012
Matthias Wiendahl; Stefan A. Oelmeier; Florian Dismer; Jürgen Hubbuch
Plasmid DNA (pDNA) is among the promising gene delivery vehicles currently evaluated for gene therapy. The large-scale production of pDNA for pharmaceutical application necessitates purification steps with a high capacity and good separation of RNA from pDNA. Most commonly used process step in the production of biopharmaceutical, namely the divers modes of chromatography, fail as they offer too limited a capacity for the considerably larger pDNA molecules. Alternative separation steps might thus be beneficial. One such separation step, aqueous two-phase extraction (ATPE) has previously been shown to work well for the purification of pDNA. The application of such a process step is however hampered by the large amount of material and time that goes into its development. In this publication, we demonstrate the use of an automatic, miniaturized ATPE screening system to the separation of pDNA from RNA. Two optimization strategies are presented: response surface methodology and genetic algorithms. Using a fully automated optimization strategy, we derived promising conditions that were scale-up tenfold. The resulting purity and recovery surpassed previously published results demonstrating that a complex optimization task such as ATPE demands an appropriately complex optimization routine.
International Journal of Pharmaceutics | 2015
Kai Baumgartner; Lara Galm; Juliane Nötzold; Heike Sigloch; Josefine Morgenstern; Kristina Schleining; Susanna Suhm; Stefan A. Oelmeier; Jürgen Hubbuch
Knowledge of protein phase behavior is essential for downstream process design in the biopharmaceutical industry. Proteins can either be soluble, crystalline or precipitated. Additionally liquid-liquid phase separation, gelation and skin formation can occur. A method to generate phase diagrams in high throughput on an automated liquid handling station in microbatch scale was developed. For lysozyme from chicken egg white, human lysozyme, glucose oxidase and glucose isomerase phase diagrams were generated at four different pH values – pH 3, 5, 7 and 9. Sodium chloride, ammonium sulfate, polyethylene glycol 300 and polyethylene glycol 1000 were used as precipitants. Crystallizing conditions could be found for lysozyme from chicken egg white using sodium chloride, for human lysozyme using sodium chloride or ammonium sulfate and glucose isomerase using ammonium sulfate. PEG caused destabilization of human lysozyme and glucose oxidase solutions or a balance of stabilizing and destabilizing effects for glucose isomerase near the isoelectric point. This work presents a systematic generation and extensive study of phase diagrams of proteins. Thus, it adds to the general understanding of protein behavior in liquid formulation and presents a convenient methodology applicable to any protein solution.
Journal of Chromatography A | 2012
Stefan A. Oelmeier; Christopher Ladd Effio; Jürgen Hubbuch
Aqueous two-phase systems have been demonstrated to be a possible alternative to chromatographic separations during the industrial purification of proteins. While convenient high throughput screening methods were shown to drastically reduce experimental effort for the evaluations of ATPS as a unit operation, the selection of which phases to investigate is currently guided largely by prior knowledge. Correlations between protein descriptors and distribution were found, but the general applicability of such correlations especially under conditions of high protein load, is questionable, as currently no correlations take the saturation of the phases with protein into account. In this manuscript, we demonstrate how precipitation experiments using the phase forming components can guide the selection of both system type and tieline length for the purification of monoclonal antibodies. Phase selection and process development time can thus be significantly reduced, as all the necessary precipitation, binodal, and tieline experiments can be conducted within one day. Good qualitative correlations between precipitation data and both distribution and recovery of the target molecule were found. Most promising systems were selected for upscale to a 500mL CPC. Influence of operation condition on the column and on HCP clearance was investigated. An increase in HCP clearance of more than threefold compared to batch extractions was observed. The importance of load protein concentration underlined the value of using a screening approach that incorporated target protein solubility data.
Journal of Biological Chemistry | 2013
Bianca Schulte; Isabel John; Bernd Simon; Christoph Brockmann; Stefan A. Oelmeier; Beate Jahraus; Henning Kirchgessner; Selina Riplinger; Teresa Carlomagno; Guido H. Wabnitz; Yvonne Samstag
Background: Cofilin is a key molecule for actin dynamics whose activity can be locally inhibited by PIP2. Results: Changes in the cofilin structure upon reduction render cofilin insensitive to PIP2 inhibition. Conclusion: Local effects of PIP2 on cofilin activity are determined by the redox microenvironment. Significance: We discovered a mechanism of spatio-microenvironmental control of actin dynamics by cofilin reduction at the plasma membrane. Oxidative stress can lead to T cell hyporesponsiveness. A reducing micromilieu (e.g. provided by dendritic cells) can rescue T cells from such oxidant-induced dysfunction. However, the reducing effects on proteins leading to restored T cell activation remained unknown. One key molecule of T cell activation is the actin-remodeling protein cofilin, which is dephosphorylated on serine 3 upon T cell costimulation and has an essential role in formation of mature immune synapses between T cells and antigen-presenting cells. Cofilin is spatiotemporally regulated; at the plasma membrane, it can be inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2). Here, we show by NMR spectroscopy that a reducing milieu led to structural changes in the cofilin molecule predominantly located on the protein surface. They overlapped with the PIP2- but not actin-binding sites. Accordingly, reduction of cofilin had no effect on F-actin binding and depolymerization and did not influence the cofilin phosphorylation state. However, it did prevent inhibition of cofilin activity through PIP2. Therefore, a reducing milieu may generate an additional pool of active cofilin at the plasma membrane. Consistently, in-flow microscopy revealed increased actin dynamics in the immune synapse of untransformed human T cells under reducing conditions. Altogether, we introduce a novel mechanism of redox regulation: reduction of the actin-remodeling protein cofilin renders it insensitive to PIP2 inhibition, resulting in enhanced actin dynamics.
Vaccine | 2016
Christopher Ladd Effio; Stefan A. Oelmeier; Jürgen Hubbuch
The development and manufacturing of safe and effective vaccines relies essentially on the availability of robust and precise analytical techniques. Virus-like particles (VLPs) have emerged as an important and valuable class of vaccines for the containment of infectious diseases. VLPs are produced by recombinant protein expression followed by purification procedures to minimize the levels of process- and product-related impurities. The control of these impurities is necessary during process development and manufacturing. Especially monitoring of the VLP size distribution is important for the characterization of the final vaccine product. Currently used methods require long analysis times and tailor-made assays. In this work, we present a size-exclusion ultra-high performance liquid chromatography (SE-UHPLC) method to characterize VLPs and quantify aggregates within 3.1min per sample applying interlaced injections. Four analytical SEC columns were evaluated for the analysis of human B19 parvo-VLPs and murine polyoma-VLPs. The optimized method was successfully used for the characterization of five recombinant protein-based VLPs including human papillomavirus (HPV) VLPs, human enterovirus 71 (EV71) VLPs, and chimeric hepatitis B core antigen (HBcAg) VLPs pointing out the generic applicability of the assay. Measurements were supported by transmission electron microscopy and dynamic light scattering. It was demonstrated that the iSE-UHPLC method provides a rapid, precise and robust tool for the characterization of VLPs. Two case studies on purification tools for VLP aggregates and storage conditions of HPV VLPs highlight the relevance of the analytical method for high-throughput process development and process monitoring of virus-like particles.
Biotechnology Progress | 2016
Kai Baumgartner; Sven Amrhein; Stefan A. Oelmeier; Jürgen Hubbuch
Hydrophobic interaction chromatography (HIC) is one of the most frequently used purification methods in downstream processing of biopharmaceuticals. During HIC, salts are the governing additives contributing to binding strength, binding capacity, and protein solubility in the liquid phase. A relatively recent approach to increase the dynamic binding capacity (DBC) of HIC adsorbers is the use of salt mixtures. By mixing chaotropic with kosmotropic salts, the DBC can strongly be influenced. For salt mixtures with a higher proportion of chaotropic than kosmotropic salt, higher DBCs were achieved compared with single salt approaches. By measuring the surface tensions of the protein salt solutions, the cavity theory—proposed by Melander and Horváth—that higher surface tensions lead to higher DBCs, was found to be invalid for salt mixtures. Aggregation temperatures of lysozyme in the salt mixtures, as a degree of hydrophobic forces, were correlated to the DBCs. Measuring the aggregation temperatures has proven to be a fast analytical methodology to estimate the hydrophobic interactions and thus can be used as a measure for an increase or decrease in the DBCs.
Biotechnology and Bioengineering | 2013
Florian Dismer; Sigrid K. Hansen; Stefan A. Oelmeier; Jürgen Hubbuch
Chromatography is the method of choice for the separation of proteins, at both analytical and preparative scale. Orthogonal purification strategies for industrial use can easily be implemented by combining different modes of adsorption. Nevertheless, with flexibility comes the freedom of choice and optimal conditions for consecutive steps need to be identified in a robust and reproducible fashion. One way to address this issue is the use of mathematical models that allow for an in silico process optimization. Although this has been shown to work, model parameter estimation for complex feedstocks becomes the bottleneck in process development. An integral part of parameter assessment is the accurate measurement of retention times in a series of isocratic or gradient elution experiments. As high‐resolution analytics that can differentiate between proteins are often not readily available, pure protein is mandatory for parameter determination. In this work, we present an approach that has the potential to solve this problem. Based on the uniqueness of UV absorption spectra of proteins, we were able to accurately measure retention times in systems of up to four co‐eluting compounds. The presented approach is calibration‐free, meaning that prior knowledge of pure component absorption spectra is not required. Actually, pure protein spectra can be determined from co‐eluting proteins as part of the methodology. The approach was tested for size‐exclusion chromatograms of 38 mixtures of co‐eluting proteins. Retention times were determined with an average error of 0.6 s (1.6% of average peak width), approximated and measured pure component spectra showed an average coefficient of correlation of 0.992. Biotechnol. Bioeng. 2013; 110: 683–693.