Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Ambs is active.

Publication


Featured researches published by Stefan Ambs.


The New England Journal of Medicine | 2009

MicroRNA Expression, Survival, and Response to Interferon in Liver Cancer

Junfang Ji; Jiong Shi; Anuradha Budhu; Zhipeng Yu; Marshonna Forgues; Stephanie Roessler; Stefan Ambs; Yidong Chen; Paul S. Meltzer; Carlo M. Croce; Lun Xiu Qin; Kwan Man; Chung Mau Lo; Joyce M. Lee; Irene Oi-Lin Ng; Jia Fan; Zhao-You Tang; Hui Chuan Sun; Xin Wei Wang

BACKGROUND Hepatocellular carcinoma is a common and aggressive cancer that occurs mainly in men. We examined microRNA expression patterns, survival, and response to interferon alfa in both men and women with the disease. METHODS We analyzed three independent cohorts that included a total of 455 patients with hepatocellular carcinoma who had undergone radical tumor resection between 1999 and 2003. MicroRNA-expression profiling was performed in a cohort of 241 patients with hepatocellular carcinoma to identify tumor-related microRNAs and determine their association with survival in men and women. In addition, to validate our findings, we used quantitative reverse-transcriptase-polymerase-chain-reaction assays to measure microRNAs and assess their association with survival and response to therapy with interferon alfa in 214 patients from two independent, prospective, randomized, controlled trials of adjuvant interferon therapy. RESULTS In patients with hepatocellular carcinoma, the expression of miR-26a and miR-26b in nontumor liver tissue was higher in women than in men. Tumors had reduced levels of miR-26 expression, as compared with paired noncancerous tissues, which indicated that the level of miR-26 expression was also associated with hepatocellular carcinoma. Moreover, tumors with reduced miR-26 expression had a distinct transcriptomic pattern, and analyses of gene networks revealed that activation of signaling pathways between nuclear factor kappaB and interleukin-6 might play a role in tumor development. Patients whose tumors had low miR-26 expression had shorter overall survival but a better response to interferon therapy than did patients whose tumors had high expression of the microRNA. CONCLUSIONS The expression patterns of microRNAs in liver tissue differ between men and women with hepatocellular carcinoma. The miR-26 expression status of such patients is associated with survival and response to adjuvant therapy with interferon alfa.


Cancer Research | 2008

Genomic Profiling of MicroRNA and Messenger RNA Reveals Deregulated MicroRNA Expression in Prostate Cancer

Stefan Ambs; Robyn L. Prueitt; Ming Yi; Robert S. Hudson; Tiffany M. Howe; Fabio Petrocca; Tiffany A. Wallace; Chang Gong Liu; Stefano Volinia; George A. Calin; Harris G. Yfantis; Robert M. Stephens; Carlo M. Croce

MicroRNAs are small noncoding RNAs that regulate the expression of protein-coding genes. To evaluate the involvement of microRNAs in prostate cancer, we determined genome-wide expression of microRNAs and mRNAs in 60 primary prostate tumors and 16 nontumor prostate tissues. The mRNA analysis revealed that key components of microRNA processing and several microRNA host genes, e.g., MCM7 and C9orf5, were significantly up-regulated in prostate tumors. Consistent with these findings, tumors expressed the miR-106b-25 cluster, which maps to intron 13 of MCM7, and miR-32, which maps to intron 14 of C9orf5, at significantly higher levels than nontumor prostate. The expression levels of other microRNAs, including a number of miR-106b-25 cluster homologues, were also altered in prostate tumors. Additional differences in microRNA abundance were found between organ-confined tumors and those with extraprostatic disease extension. Lastly, we found evidence that some microRNAs are androgen-regulated and that tumor microRNAs influence transcript abundance of protein-coding target genes in the cancerous prostate. In cell culture, E2F1 and p21/WAF1 were identified as targets of miR-106b, Bim of miR-32, and exportin-6 and protein tyrosine kinase 9 of miR-1. In summary, microRNA expression becomes altered with the development and progression of prostate cancer. Some of these microRNAs regulate the expression of cancer-related genes in prostate cancer cells.


Free Radical Biology and Medicine | 2008

The chemical biology of nitric oxide: implications in cellular signaling.

Douglas D. Thomas; Lisa A. Ridnour; Jeff S. Isenberg; Wilmarie Flores-Santana; Christopher H. Switzer; Sonia Donzelli; Perwez Hussain; Cecilia Vecoli; Nazareno Paolocci; Stefan Ambs; Carol A. Colton; Curtis C. Harris; David D. Roberts; David A. Wink

Nitric oxide (NO) has earned the reputation of being a signaling mediator with many diverse and often opposing biological activities. The diversity in response to this simple diatomic molecule comes from the enormous variety of chemical reactions and biological properties associated with it. In the past few years, the importance of steady-state NO concentrations has emerged as a key determinant of its biological function. Precise cellular responses are differentially regulated by specific NO concentration. We propose five basic distinct concentration levels of NO activity: cGMP-mediated processes ([NO]<1-30 nM), Akt phosphorylation ([NO] = 30-100 nM), stabilization of HIF-1alpha ([NO] = 100-300 nM), phosphorylation of p53 ([NO]>400 nM), and nitrosative stress (1 microM). In general, lower NO concentrations promote cell survival and proliferation, whereas higher levels favor cell cycle arrest, apoptosis, and senescence. Free radical interactions will also influence NO signaling. One of the consequences of reactive oxygen species generation is to reduce NO concentrations. This antagonizes the signaling of nitric oxide and in some cases results in converting a cell-cycle arrest profile to a cell survival profile. The resulting reactive nitrogen species that are generated from these reactions can also have biological effects and increase oxidative and nitrosative stress responses. A number of factors determine the formation of NO and its concentration, such as diffusion, consumption, and substrate availability, which are referred to as kinetic determinants for molecular target interactions. These are the chemical and biochemical parameters that shape cellular responses to NO. Herein we discuss signal transduction and the chemical biology of NO in terms of the direct and indirect reactions.


Cancer Research | 2008

Tumor Immunobiological Differences in Prostate Cancer between African-American and European-American Men

Tiffany A. Wallace; Robyn L. Prueitt; Ming Yi; Tiffany M. Howe; John W. Gillespie; Harris G. Yfantis; Robert M. Stephens; Neil E. Caporaso; Christopher A. Loffredo; Stefan Ambs

The incidence and mortality rates of prostate cancer are significantly higher in African-American men when compared with European-American men. We tested the hypothesis that differences in tumor biology contribute to this survival health disparity. Using microarray technology, we obtained gene expression profiles of primary prostate tumors resected from 33 African-American and 36 European-American patients. These tumors were matched on clinical variables. We also evaluated 18 nontumor prostate tissues from seven African-American and 11 European-American patients. The resulting datasets were analyzed for expression differences on the gene and pathway level comparing African-American with European-American patients. Our analysis revealed a significant number of genes, e.g., 162 transcripts at a false-discovery rate of <or=5% to be differently expressed between African-American and European-American patients. Using a disease association analysis, we identified a common relationship of these transcripts with autoimmunity and inflammation. These findings were corroborated on the pathway level with numerous differently expressed genes clustering in immune response, stress response, cytokine signaling, and chemotaxis pathways. Several known metastasis-promoting genes, including autocrine mobility factor receptor, chemokine (C-X-C motif) receptor 4, and matrix metalloproteinase 9, were more highly expressed in tumors from African-Americans than European-Americans. Furthermore, a two-gene tumor signature that accurately differentiated between African-American and European-American patients was identified. This finding was confirmed in a blinded analysis of a second sample set. In conclusion, the gene expression profiles of prostate tumors indicate prominent differences in tumor immunobiology between African-American and European-American men. The profiles portray the existence of a distinct tumor microenvironment in these two patient groups.


Journal of Clinical Investigation | 2014

MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis

Atsushi Terunuma; Nagireddy Putluri; Prachi Mishra; Ewy Mathe; Tiffany H. Dorsey; Ming Yi; Tiffany A. Wallace; Haleem J. Issaq; Ming Zhou; J. Keith Killian; Holly Stevenson; Edward D. Karoly; King C. Chan; Susmita Samanta; DaRue A. Prieto; Tiffany Hsu; Sarah J. Kurley; Vasanta Putluri; Rajni Sonavane; Daniel C. Edelman; Jacob Wulff; Adrienne M. Starks; Yinmeng Yang; Rick A. Kittles; Harry G. Yfantis; Dong H. Lee; Olga B. Ioffe; Rachel Schiff; Robert M. Stephens; Paul S. Meltzer

Metabolic profiling of cancer cells has recently been established as a promising tool for the development of therapies and identification of cancer biomarkers. Here we characterized the metabolomic profile of human breast tumors and uncovered intrinsic metabolite signatures in these tumors using an untargeted discovery approach and validation of key metabolites. The oncometabolite 2-hydroxyglutarate (2HG) accumulated at high levels in a subset of tumors and human breast cancer cell lines. We discovered an association between increased 2HG levels and MYC pathway activation in breast cancer, and further corroborated this relationship using MYC overexpression and knockdown in human mammary epithelial and breast cancer cells. Further analyses revealed globally increased DNA methylation in 2HG-high tumors and identified a tumor subtype with high tissue 2HG and a distinct DNA methylation pattern that was associated with poor prognosis and occurred with higher frequency in African-American patients. Tumors of this subtype had a stem cell-like transcriptional signature and tended to overexpress glutaminase, suggestive of a functional relationship between glutamine and 2HG metabolism in breast cancer. Accordingly, 13C-labeled glutamine was incorporated into 2HG in cells with aberrant 2HG accumulation, whereas pharmacologic and siRNA-mediated glutaminase inhibition reduced 2HG levels. Our findings implicate 2HG as a candidate breast cancer oncometabolite associated with MYC activation and poor prognosis.


The Prostate | 2008

Expression of MicroRNAs and Protein-Coding Genes Associated With Perineural Invasion in Prostate Cancer

Robyn L. Prueitt; Ming Yi; Robert S. Hudson; Tiffany A. Wallace; Tiffany M. Howe; Harris G. Yfantis; Dong H. Lee; Robert M. Stephens; Chang Gong Liu; George A. Calin; Carlo M. Croce; Stefan Ambs

Perineural invasion (PNI) is the dominant pathway for local invasion in prostate cancer. To date, only few studies have investigated the molecular differences between prostate tumors with PNI and those without it.


Journal of Clinical Investigation | 2010

Increased NOS2 predicts poor survival in estrogen receptor–negative breast cancer patients

Sharon A. Glynn; Brenda J. Boersma; Tiffany H. Dorsey; Ming Yi; Harris G. Yfantis; Lisa A. Ridnour; Damali N. Martin; Christopher H. Switzer; Robert S. Hudson; David A. Wink; Dong H. Lee; Robert M. Stephens; Stefan Ambs

Inducible nitric oxide synthase (NOS2) is involved in wound healing, angiogenesis, and carcinogenesis. NOS2 upregulation and increased nitric oxide (NO) production affect the redox state of cells and can induce protein, lipid, and DNA modifications. To investigate whether NOS2 levels influence survival of breast cancer patients, we examined NOS2 expression and its association with tumor markers and survival in 248 breast tumors. In multivariable survival analysis, increased NOS2 predicted inferior survival in women with estrogen receptor α-negative (ER-negative) tumors. Microdissected tumor epithelium from ER-negative tumors with high NOS2 had increased IL-8 and a gene expression signature characteristic of basal-like breast cancer with poor prognosis. In cell culture, NO only induced selected signature genes in ER-negative breast cancer cells. ER transgene expression in ER-negative cells inhibited NO-induced upregulation of the stem cell marker CD44 and other proteins encoded by signature genes, but not of IL-8. Exposure to NO also enhanced cell motility and invasion of ER-negative cells. Last, pathway analysis linked the tumor NOS2 gene signature to c-Myc activation. Thus, NOS2 is associated with a basal-like transcription pattern and poor survival of ER-negative patients.


International Journal of Cancer | 2008

A stromal gene signature associated with inflammatory breast cancer

Brenda J. Boersma; Mark Reimers; Ming Yi; Joseph A. Ludwig; Brian T. Luke; Robert M. Stephens; Harry G. Yfantis; Dong H. Lee; John N. Weinstein; Stefan Ambs

The factors that determine whether a breast carcinoma will develop into inflammatory breast cancer (IBC) remain poorly understood. Recent evidence indicates that the tumor stroma influences cancer phenotypes. We tested the hypotheses that the gene expression signature of the tumor stroma is a distinctive feature of IBC. We used laser capture microdissection to obtain enriched populations of tumor epithelial cells and adjacent stromal cells from 15 patients with IBC and 35 patients with invasive, noninflammatory breast cancer (non‐IBC). Their mRNA expression profiles were assessed using Affymetrix GeneChips™. In addition, a previously established classifier for IBC was evaluated for the resulting data sets. The gene expression profile of the tumor stroma distinguished IBC from non‐IBC, and a previously established IBC prediction signature performed better in classifying IBC using the gene expression profile of the tumor stroma than it did using the profile of the tumor epithelium. In a pathway analysis, the genes differentially expressed between IBC and non‐IBC tumors clustered in distinct pathways. We identified multiple pathways related to the endoplasmic stress response that could be functionally significant in IBC. Our findings suggest that the gene expression in the tumor stroma may play a role in determining the IBC phenotype.


Journal of Clinical Investigation | 2011

FOXO3 programs tumor-associated DCs to become tolerogenic in human and murine prostate cancer

Stephanie K. Watkins; Ziqiang Zhu; Elena Riboldi; Kim A. Shafer-Weaver; Katherine E. Stagliano; Martha M. Sklavos; Stefan Ambs; Hideo Yagita; Arthur A. Hurwitz

The limited success of cancer immunotherapy is often attributed to the loss of antigen-specific T cell function in situ. However, the mechanism for this loss of function is unknown. In this study, we describe a population of tumor-associated DCs (TADCs) in both human and mouse prostate cancer that tolerizes and induces suppressive activity in tumor-specific T cells. In tumors from human prostate cancer patients and transgenic adenocarcinoma of the mouse prostate (TRAMP) mice, TADCs expressed elevated levels of FOXO3 and Foxo3, respectively, which correlated with expression of suppressive genes that negatively regulate T cell function. Silencing FOXO3 and Foxo3 with siRNAs abrogated the ability of human and mouse TADCs, respectively, to tolerize and induce suppressive activity by T cells. Silencing Foxo3 in mouse TADCs was also associated with diminished expression of tolerogenic mediators, such as indoleamine-2,3-dioxygenase, arginase, and TGF-β, and upregulated expression of costimulatory molecules and proinflammatory cytokines. Importantly, transfer of tumor-specific CD4+ Th cells into TRAMP mice abrogated TADC tolerogenicity, which was associated with reduced Foxo3 expression. These findings demonstrate that FOXO3 may play a critical role in mediating TADC-induced immune suppression. Moreover, our results identify what we believe to be a novel target for preventing CTL tolerance and enhancing immune responses to cancer by modulating the immunosuppressive activity of TADCs found in the tumor microenvironment.


Nucleic Acids Research | 2012

MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer

Robert S. Hudson; Ming Yi; Dominic Esposito; Stephanie K. Watkins; Arthur A. Hurwitz; Harris G. Yfantis; Dong H. Lee; James F. Borin; Michael Naslund; Richard B. Alexander; Tiffany H. Dorsey; Robert M. Stephens; Carlo M. Croce; Stefan Ambs

We previously reported that miR-1 is among the most consistently down-regulated miRs in primary human prostate tumors. In this follow-up study, we further corroborated this finding in an independent data set and made the novel observation that miR-1 expression is further reduced in distant metastasis and is a candidate predictor of disease recurrence. Moreover, we performed in vitro experiments to explore the tumor suppressor function of miR-1. Cell-based assays showed that miR-1 is epigenetically silenced in human prostate cancer. Overexpression of miR-1 in these cells led to growth inhibition and down-regulation of genes in pathways regulating cell cycle progression, mitosis, DNA replication/repair and actin dynamics. This observation was further corroborated with protein expression analysis and 3′-UTR-based reporter assays, indicating that genes in these pathways are either direct or indirect targets of miR-1. A gene set enrichment analysis revealed that the miR-1-mediated tumor suppressor effects are globally similar to those of histone deacetylase inhibitors. Lastly, we obtained preliminary evidence that miR-1 alters the cellular organization of F-actin and inhibits tumor cell invasion and filipodia formation. In conclusion, our findings indicate that miR-1 acts as a tumor suppressor in prostate cancer by influencing multiple cancer-related processes and by inhibiting cell proliferation and motility.

Collaboration


Dive into the Stefan Ambs's collaboration.

Top Co-Authors

Avatar

Sharon A. Glynn

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Tiffany H. Dorsey

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David A. Wink

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lisa A. Ridnour

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Curtis C. Harris

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge