Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Bagby is active.

Publication


Featured researches published by Stefan Bagby.


Science | 1995

Solution structure of the epithelial cadherin domain responsible for selective cell adhesion

Michael Overduin; Timothy S. Harvey; Stefan Bagby; Kit I. Tong; Patrick Yau; Masatoshi Takeichi; Mitsuhiko Ikura

Cadherins are calcium-dependent cell adhesion molecules containing extracellular repeats of approximately 110 amino acids. The three-dimensional structure of the amino-terminal repeat of mouse epithelial cadherin was determined by multidimensional heteronuclear magnetic resonance spectroscopy. The calcium ion was bound by a short alpha helix and by loops at one end of the seven-stranded beta-barrel structure. An exposed concave face is in a position to provide homophilic binding specificity and was also sensitive to calcium ligation. Unexpected structural similarities with the immunoglobulin fold suggest an evolutionary relation between calcium-dependent and calcium-independent cell adhesion molecules.


Cell | 1998

Solution structure of a TBP-TAFII230 complex: Protein mimicry of the minor groove surface of the TATA box unwound by TBP

Dingjiang Liu; Rieko Ishima; Kit I. Tong; Stefan Bagby; Tetsuro Kokubo; D. R. Muhandiram; Lewis E. Kay; Yoshihiro Nakatani; Mitsuhiko Ikura

General transcription factor TFIID consists of TATA box-binding protein (TBP) and TBP-associated factors (TAF(II)s), which together play a central role in both positive and negative regulation of transcription. The N-terminal region of the 230 kDa Drosophila TAF(II) (dTAF(II)230) binds directly to TBP and inhibits TBP binding to the TATA box. We report here the solution structure of the complex formed by dTAF(II)230 N-terminal region (residues 11-77) and TBP. dTAF(II)230(11-77) comprises three alpha helices and a beta hairpin, forming a core that occupies the concave DNA-binding surface of TBP. The TBP-binding surface of dTAF(II)230 markedly resembles the minor groove surface of the partially unwound TATA box in the TBP-TATA complex. This protein mimicry of the TATA element surface provides the structural basis of the mechanism by which dTAF(II)230 negatively controls the TATA box-binding activity within the TFIID complex.


Cell | 1995

Solution structure of the c-terminal core domain of human TFIIB: Similarity to cyclin A and interaction with TATA-binding protein

Stefan Bagby; Sungjoon Kim; Edio Maldonado; Kit I. Tong; Danny Reinberg; Mitsuhiko Ikura

TFIIB is an essential component of the machinery that transcribes protein-coding genes. The three-dimensional structure of the human TFIIB core domain (TFIIBc) has been determined using multidimensional heteronuclear magnetic resonance spectroscopy. The molecule consists of two direct repeats that adopt similar alpha-helical folds, conferring pseudo-twofold symmetry. An extensive, central basic surface including an amphipathic alpha helix is critical to the function of TFIIB as a bridge between the TBP-promoter complex and RNA polymerase II and associated general and regulatory transcription factors. Similarities between the TFIIBc and cyclin A folds indicate that elements of the eukaryotic cell cycle control apparatus evolved from more fundamental transcriptional control components, demonstrating a link between the transcription and cell cycle molecular machineries.


Journal of Biological Chemistry | 2008

Interaction of Human Complement with Sbi, a Staphylococcal Immunoglobulin-binding Protein INDICATIONS OF A NOVEL MECHANISM OF COMPLEMENT EVASION BY STAPHYLOCOCCUS AUREUS

Julia Burman; Elisa Leung; Karen L. Atkins; Maghnus O'Seaghdha; Lea Lango; Pau Bernadó; Stefan Bagby; Dimitri I. Svergun; Timothy J. Foster; David E. Isenman; Jean van den Elsen

Staphylococcal immunoglobulin-binding protein, Sbi, is a 436-residue protein produced by many strains of Staphylococcus aureus. It was previously characterized as being cell surface-associated and having binding capacity for human IgG and β2-glycoprotein I. Here we show using small angle x-ray scattering that the proposed extracellular region of Sbi (Sbi-E) is an elongated molecule consisting of four globular domains, two immunoglobulin-binding domains (I and II) and two novel domains (III and IV). We further show that together domains III and IV (Sbi-III-IV), as well as domain IV on its own (Sbi-IV), bind complement component C3 via contacts involving both the C3dg fragment and the C3a anaphylatoxin domain. Preincubation of human serum with either Sbi-E or Sbi-III-IV is inhibitory to all complement pathways, whereas domain IV specifically inhibits the alternative pathway. Monitoring C3 activation in serum incubated with Sbi fragments reveals that Sbi-E and Sbi-III-IV both activate the alternative pathway, leading to consumption of C3. By contrast, inhibition of this pathway by Sbi-IV does not involve C3 consumption. The observation that Sbi-E activates the alternative pathway is counterintuitive to intact Sbi being cell wall-associated, as recruiting complement to the surface of S. aureus would be deleterious to the bacterium. Upon re-examination of this issue, we found that Sbi was not associated with the cell wall fraction, but rather was found in the growth medium, consistent with it being an excreted protein. As such, our data suggest that Sbi helps mediate bacterial evasion of complement via a novel mechanism, namely futile fluid-phase consumption.


Nature | 2015

YAP is essential for tissue tension to ensure vertebrate 3D body shape

Sean R. Porazinski; Huijia Wang; Yoichi Asaoka; Martin Behrndt; Tatsuo Miyamoto; Hitoshi Morita; Shoji Hata; Takashi Sasaki; S.F. Gabriel Krens; Yumi Osada; Akihiro Momoi; Sarah Linton; Joel B. Miesfeld; Brian A. Link; Takeshi Senga; Atahualpa Castillo-Morales; Araxi O. Urrutia; Nobuyoshi Shimizu; Hideaki Nagase; Shinya Matsuura; Stefan Bagby; Hisato Kondoh; Hiroshi Nishina; Carl-Philipp Heisenberg; Makoto Furutani-Seiki

Vertebrates have a unique 3D body shape in which correct tissue and organ shape and alignment are essential for function. For example, vision requires the lens to be centred in the eye cup which must in turn be correctly positioned in the head. Tissue morphogenesis depends on force generation, force transmission through the tissue, and response of tissues and extracellular matrix to force. Although a century ago D’Arcy Thompson postulated that terrestrial animal body shapes are conditioned by gravity, there has been no animal model directly demonstrating how the aforementioned mechano-morphogenetic processes are coordinated to generate a body shape that withstands gravity. Here we report a unique medaka fish (Oryzias latipes) mutant, hirame (hir), which is sensitive to deformation by gravity. hir embryos display a markedly flattened body caused by mutation of YAP, a nuclear executor of Hippo signalling that regulates organ size. We show that actomyosin-mediated tissue tension is reduced in hir embryos, leading to tissue flattening and tissue misalignment, both of which contribute to body flattening. By analysing YAP function in 3D spheroids of human cells, we identify the Rho GTPase activating protein ARHGAP18 as an effector of YAP in controlling tissue tension. Together, these findings reveal a previously unrecognised function of YAP in regulating tissue shape and alignment required for proper 3D body shape. Understanding this morphogenetic function of YAP could facilitate the use of embryonic stem cells to generate complex organs requiring correct alignment of multiple tissues.


Structure | 1994

NMR-derived three-dimensional solution structure of protein S complexed with calcium.

Stefan Bagby; Timothy S. Harvey; Susan G Eagle; Sumiko Inouye; Mitsuhiko Ikura

BACKGROUND Protein S is a developmentally-regulated Ca(2+)-binding protein of the soil bacterium Myxococcus xanthus. It functions by forming protective, multilayer spore surface assemblies which may additionally act as a cell-cell adhesive. Protein S is evolutionarily related to vertebrate lens beta gamma-crystallins. RESULTS The three-dimensional solution structure of Ca(2+)-loaded protein S has been determined using multi-dimensional heteronuclear NMR spectroscopy. (Sixty structures were calculated, from which thirty were selected with a root mean square difference from the mean of 0.38 A for backbone atoms and 1.22 A for all non-hydrogen atoms.) The structure was analyzed and compared in detail with X-ray crystallographic structures of beta gamma-crystallins. The two internally homologous domains of protein S were compared, and hydrophobic cores, domain interfaces, surface ion pairing, amino-aromatic interactions and potential modes of multimerization are discussed. CONCLUSIONS Structural features of protein S described here help to explain its overall thermostability, as well as the higher stability and Ca2+ affinity of the amino-terminal domain relative to the carboxy-terminal domain. Two potential modes of multimerization are proposed involving cross-linking of protein S molecules through surface Ca(2+)-binding sites and formation of the intramolecular protein S or gamma B-crystallin interdomain interface in an intermolecular content. This structural analysis may also have implications for Ca(2+)-dependent cell-cell interactions mediated by the vertebrate cadherins and Dictyostelium discoideum protein gp24.


Biochemistry | 2011

Structural features and ligand binding properties of tandem WW domains from YAP and TAZ, nuclear effectors of the Hippo pathway.

Claire Webb; Abhishek Upadhyay; Francesca Giuntini; Ian M. Eggleston; Makoto Furutani-Seiki; Rieko Ishima; Stefan Bagby

The paralogous multifunctional adaptor proteins YAP and TAZ are the nuclear effectors of the Hippo pathway, a central mechanism of organ size control and stem cell self-renewal. WW domains, mediators of protein-protein interactions, are essential for YAP and TAZ function, enabling interactions with PPxY motifs of numerous partner proteins. YAP has single and double WW domain isoforms (YAP1 and YAP2) whereas only a single WW domain isoform of TAZ has been described to date. Here we identify the first example of a double WW domain isoform of TAZ. Using NMR, we have characterized conformational features and peptide binding of YAP and TAZ tandem WW domains (WW1-WW2). The solution structure of YAP WW2 confirms that it has a canonical three-stranded antiparallel β-sheet WW domain fold. While chemical shift-based analysis indicates that the WW domains in the tandem WW pairs retain the characteristic WW domain fold, 15N relaxation data show that, within the respective WW pairs, YAP WW1 and both WW1 and WW2 of TAZ undergo conformational exchange. 15N relaxation data also indicate that the linker between the WW domains is flexible in both YAP and TAZ. Within both YAP and TAZ tandem WW pairs, WW1 and WW2 bind single PPxY-containing peptide ligand concurrently and noncooperatively with sub-mM affinity. YAP and TAZ WW1-WW2 bind a dual PPxY-containing peptide with approximately 6-fold higher affinity. Our results indicate that both WW domains in YAP and TAZ are functional and capable of enhanced affinity binding to multi-PPxY partner proteins such as LATS1, ErbB4, and AMOT.


Journal of Immunology | 2010

Mutational analyses reveal that the staphylococcal immune evasion molecule Sbi and complement receptor 2 (CR2) share overlapping contact residues on C3d: implications for the controversy regarding the CR2/C3d cocrystal structure

David E. Isenman; Elisa Leung; Julia D. Mackay; Stefan Bagby; Jean van den Elsen

We recently characterized an interaction between the Staphylococcus aureus immune evasion molecule Staphylococcus aureus binder of Ig (Sbi) and complement C3, an interaction mediated primarily through the binding of C3d(g) to Sbi domain IV. Events related to these studies prompted us to investigate via mutagenesis the binding interface of C3d for Sbi domain IV (Sbi-IV), as well as to revisit the controversial issue of the complement receptor 2 (CR2) binding site of C3d. Specifically, we had shown that Sbi domains III and IV fragment binding to C3dg inhibited the latter’s binding to CR2. Moreover, a published cocrystal structure of C3d bound to complement inhibitory C-terminal domain of extracellular fibrinogen-binding protein (Efb-C), a structural and functional homolog of Sbi-IV, showed Efb-C binding to a region on the concave face of C3d previously implicated in CR2 binding by our mutagenesis data but not confirmed in the CR2(short consensus repeat [SCR]1–2):C3d cocrystal structure. We have now analyzed by surface plasmon resonance the binding of a series of variant C3dg molecules to biosensor-bound Sbi-IV or CR2(SCR1–2). We found that mutations to the concave face acidic pocket of C3d significantly affected binding to both Sbi-IV and CR2, although there was divergence in which residues were most important in each case. By contrast, no binding defects were seen for mutations made to the sideface of C3d implicated from the cocrystal structure to be involved in binding CR2(SCR1–2). The results with Sbi-IV suggest a mode of binding highly similar to that visualized in the Efb-C:C3d complex. The results with CR2 confirm our earlier mapping studies and cast even further doubt on the physiologic relevance of the complex visualized in the C3d:CR2 cocrystal.


Journal of Biological Chemistry | 2008

Structure-Function Analysis of the C3 Binding Region of Staphylococcus aureus Immune Subversion Protein Sbi

Abhishek Upadhyay; Julia Burman; Elizabeth A. Clark; Elisa Leung; David E. Isenman; Jean van den Elsen; Stefan Bagby

Among the recently discovered Staphylococcus aureus immune evasion proteins, Sbi is unique in its ability to interact with components of both the adaptive and innate immune systems of the host. Sbi domains I and II (Sbi-I and Sbi-II) bind IgG. Sbi domain IV (residues 198–266) binds the central complement protein C3. When linked to Sbi-III, Sbi-IV induces a futile consumption of complement via alternative pathway activation, whereas isolated Sbi-IV specifically inhibits the alternative pathway without complement consumption. Here we have determined the three-dimensional structure of Sbi-IV by NMR spectroscopy, showing that Sbi-IV adopts a three-helix bundle fold similar to those of the S. aureus complement inhibitors Efb-C, Ehp, and SCIN. The 1H-15N HSQC spectrum of Sbi-III indicates that this domain, essential for futile complement consumption, is natively unfolded, at least when isolated from the rest of Sbi. Sbi-IV and Sbi-III-IV both bind C3dg with 1:1 stoichiometry and submicromolar affinity. Despite low overall sequence identity, Sbi possesses the same residues as Efb at two positions essential for Efb-C binding to C3d. Mutation to alanine of either of these residues, Arg-231 and Asn-238, abolishes both Sbi-IV binding to C3dg and Sbi-IV alternative pathway inhibition. The almost complete conservation of Sbi-III and Sbi-IV amino acid sequences across more than 30 strains isolated from human and animal hosts indicates that the unique mechanism of Sbi in complement system subversion is a feature of infections of both humans and economically important animals.


Journal of Biomolecular NMR | 1997

The button test: A small scale method using microdialysis cells for assessing protein solubility at concentrations suitable for NMR

Stefan Bagby; Kit I. Tong; Dingjiang Liu; Jean-René Alattia; Mitsuhiko Ikura

A simple method has been developed for screening solutionconditions to determine conditions under which a protein is soluble at thehigh concentrations typically used for NMR spectroscopy. The method employsmicrodialysis cells or ‘buttons’. The low sample volume (5 µl)required for each microdialysis button permits testing of a wide range ofsolution conditions and temperatures with high protein concentrations, usinga small amount of protein. Following precipitation of several NMR samples ofthe C-terminal core domain of human TFIIB, the microdialysis button screenfacilitated identification of conditions in which precipitation of the TFIIBcore domain was eliminated. The microdialysis button method for screeningsolution conditions is generally applicable and has been used to permitrapid identification of suitable NMR sample solution conditions for proteinsinvolved in transcription and cell adhesion.

Collaboration


Dive into the Stefan Bagby's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mitsuhiko Ikura

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dingjiang Liu

Ontario Institute for Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge