Stefan Bauersachs
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefan Bauersachs.
Genome Research | 2001
Stefan Wiemann; Bernd Weil; Ruth Wellenreuther; Johannes Gassenhuber; Sabine Glassl; Wilhelm Ansorge; Michael Böcher; Helmut Blöcker; Stefan Bauersachs; Helmut Blum; Jürgen Lauber; Andreas Düsterhöft; Andreas Beyer; Karl Köhrer; Normann Strack; Hans Werner Mewes; Birgit Ottenwälder; Brigitte Obermaier; Jens Tampe; Dagmar Heubner; Rolf Wambutt; Bernhard Korn; Michaela Klein; Annemarie Poustka
With the complete human genomic sequence being unraveled, the focus will shift to gene identification and to the functional analysis of gene products. The generation of a set of cDNAs, both sequences and physical clones, which contains the complete and noninterrupted protein coding regions of all human genes will provide the indispensable tools for the systematic and comprehensive analysis of protein function to eventually understand the molecular basis of man. Here we report the sequencing and analysis of 500 novel human cDNAs containing the complete protein coding frame. Assignment to functional categories was possible for 52% (259) of the encoded proteins, the remaining fraction having no similarities with known proteins. By aligning the cDNA sequences with the sequences of the finished chromosomes 21 and 22 we identified a number of genes that either had been completely missed in the analysis of the genomic sequences or had been wrongly predicted. Three of these genes appear to be present in several copies. We conclude that full-length cDNA sequencing continues to be crucial also for the accurate identification of genes. The set of 500 novel cDNAs, and another 1000 full-coding cDNAs of known transcripts we have identified, adds up to cDNA representations covering 2%--5 % of all human genes. We thus substantially contribute to the generation of a gene catalog, consisting of both full-coding cDNA sequences and clones, which should be made freely available and will become an invaluable tool for detailed functional studies.
Biology of Reproduction | 2006
Claudia Klein; Stefan Bauersachs; Susanne E. Ulbrich; Ralf Einspanier; Heinrich H. D. Meyer; S. Schmidt; Horst-Dieter Reichenbach; Margarete Vermehren; Fred Sinowatz; Helmut Blum; Eckhard Wolf
Abstract Initiation and maintenance of pregnancy are critically dependent on an intact embryo-maternal communication in the preimplantation period. To get new insights into molecular mechanisms underlying this complex dialog, a holistic transcriptome study of endometrium samples from Day 18 pregnant vs. nonpregnant twin cows was performed. This genetically defined model system facilitated the identification of specific conceptus-induced changes of the endometrium transcriptome. Using a combination of subtracted cDNA libraries and cDNA array hybridization, 87 different genes were identified as upregulated in pregnant animals. Almost one half of these genes are known to be stimulated by type I interferons. For the ISG15ylation system, which is assumed to play an important role in interferon tau (IFNT) signaling, mRNAs of four potential components (IFITM1, IFITM3, HSXIAPAF1, and DTX3L) were found at increased levels in addition to ISG15 and UBE1L. These results were further substantiated by colocalization of these mRNAs in the endometrium of pregnant animals shown by in situ hybridization. A functional classification of the identified genes revealed several different biological processes involved in the preparation of the endometrium for the attachment and implantation of the embryo. Specifically, elevated transcript levels were found for genes involved in modulation of the maternal immune system, genes relevant for cell adhesion, and for remodeling of the endometrium. This first systematic study of maternal transcriptome changes in response to the presence of an embryo on Day 18 of pregnancy in cattle is an important step toward deciphering the embryo-maternal dialog using a systems biology approach.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Stefan Bauersachs; Susanne E. Ulbrich; Valeri Zakhartchenko; Megan Minten; M. Reichenbach; Horst-Dieter Reichenbach; Helmut Blum; Thomas E. Spencer; Eckhard Wolf
Although somatic cell nuclear transfer (SCNT) cloning is more efficient in cattle than in any other species tested so far, there is a high rate of pregnancy failure that has been linked to structural and functional abnormalities of the placenta. We tested the hypothesis that these changes may originate from disturbed embryo–maternal interactions in the peri-implantation period. Therefore, we evaluated the response of the endometrium to SCNT embryos (produced from 7 different fetal fibroblast cell lines) as compared with embryos derived from in vitro fertilization (IVF). SCNT embryos and IVF embryos were cultured under identical conditions to the blastocyst stage (day 7) and were transferred to corresponding recipients, which were slaughtered at day 18 of pregnancy. The mRNA profiles of endometrium samples were obtained using a custom cDNA microarray enriched for transcripts differentially expressed in the endometrium and/or oviduct epithelium during the estrous cycle and/or early pregnancy. Overall, the variation in mRNA profiles was greater in the SCNT group than in the IVF group. Furthermore, 58 transcripts were differentially abundant in endometria from SCNT and IVF pregnancies. Prominent examples are orphan nuclear receptor COUP-TFII and connexin 43, both known to play important roles in uterine receptivity and conceptus placentation. These findings suggest that placental failure in bovine clone pregnancies may originate from abnormal embryo–maternal communication that develops during the peri-implantation period. Endometrium transcriptome profiles may serve as a tool to evaluate SCNT embryos for their ability to establish pregnancy and develop a functional placenta.
Reproduction | 2008
Katrin Mitko; Susanne E. Ulbrich; Hendrik Wenigerkind; Fred Sinowatz; Helmut Blum; Eckhard Wolf; Stefan Bauersachs
During the oestrous cycle, the bovine endometrium exhibits characteristic morphological and functional changes, which are mainly induced by progesterone (P(4)), oestrogens and oxytocin. We studied the response of the endometrium to this changing hormonal environment at the transcriptome level using a custom-made cDNA microarray. Endometrium samples were recovered from Simmental heifers on days 0 (oestrus), 3.5 (metoestrus), 12 (dioestrus) and 18. The latter group was divided into animals with high (late dioestrus) and low P(4) levels (preoestrus). Significance analysis of microarrays revealed 269 genes exhibiting significant changes in their transcript levels during the oestrous cycle in distinct temporal patterns. Two major types of expression profiles were observed, which showed the highest mRNA levels during the oestrus phase or the highest levels during the luteal phase respectively. A minor group of genes exhibited the highest mRNA levels on day 3.5. Gene ontology (GO) analyses revealed GO categories related to extracellular matrix remodelling, transport, and cell growth and morphogenesis enriched at oestrus, whereas immune response and particular metabolic pathways were overrepresented at dioestrus. Generation of gene interaction networks uncovered the genes possibly involved in endometrial remodelling (e.g. collagen genes, TNC, SPARC, MMP2, MEP1B, TIMP1, TIMP2, HTRA1), regulation of angiogenesis (e.g. ANGPTL2, TEK, NPY, AGT, EPAS1, KLF5 ), regulation of invasive growth (e.g. PCSK5, tight junction proteins, GRP, LGALS1, ANXA2, NOV, PLAT, MET, TDGF1, CST6, ITGB4), cell adhesion (e.g. MUC16, LGALS3BP) and embryo feeding (e.g. SLC1A1, SLC11A2, SLC16A1, SEPP1, ENPP1). Localisation of mRNA expression in the endometrium was analysed for CLDN4, CLDN10, TJP1, PCSK5, MAGED1, and LGALS1.
Experimental and Clinical Endocrinology & Diabetes | 2008
Stefan Bauersachs; Katrin Mitko; Susanne E. Ulbrich; Helmut Blum; Eckhard Wolf
The endometrium undergoes marked functional changes during estrous cycle and pregnancy. As the adjacent environment of the conceptus, it represents the maternal interface for embryo-maternal communication, which is essential to maintain pregnancy. Transcriptome studies provide the unique opportunity to assess molecular profiles changing in response to endocrine or metabolic stimuli or to embryonic pregnancy recognition signals. Here we review the current state of transcriptome profiling techniques and the results of a series of transciptome studies comparing bovine endometrium samples during the estrous cycle or endometrium samples from pregnant vs. non-pregnant animals. These studies revealed specific mRNA profiles which are characteristic for the functional status of the endometrium. Transcriptome studies of endometrial samples recovered during the pre-attachment period identified many interferon-stimulated genes, genes that are possibly involved in embryo-maternal immune modulation ( C1S, C1R, C4, SERPING1, UTMP, CD81, IFITM1, BST2), as well as genes affecting cell adhesion ( AGRN, CD81, LGALS3BP, LGALS9, GPLD1, MFGE8, and TGM2) and remodeling of the endometrium ( CLDN4, MEP1B, LGMN, MMP19, TIMP2, TGM2, MET, and EPSTI1). The results of these transcriptome studies were compared to those of similar microarray analyses in human, mouse and Rhesus monkey to identify similarities in endometrial biology between mammalian species and species-specific differences. Future studies will cover dynamic transcriptome changes between different stages of early pregnancy, the relationship between metabolic problems in dairy cows and the functionality of reproductive tissues as well as endometrium transcriptome profiles in recipients of somatic cell nuclear transfer embryos.
Cell Reports | 2015
Vincent J. Lynch; Mauris C. Nnamani; Aurélie Kapusta; Kathryn J. Brayer; Silvia Plaza; Erik C. Mazur; Deena Emera; Shehzad Z. Sheikh; Frank Grützner; Stefan Bauersachs; Alexander Graf; Steven L. Young; Jason D. Lieb; Francesco J. DeMayo; Cédric Feschotte; Günter P. Wagner
SUMMARY A major challenge in biology is determining how evolutionarily novel characters originate; however, mechanistic explanations for the origin of new characters are almost completely unknown. The evolution of pregnancy is an excellent system in which to study the origin of novelties because mammals preserve stages in the transition from egg laying to live birth. To determine the molecular bases of this transition, we characterized the pregnant/gravid uterine transcriptome from tetrapods to trace the evolutionary history of uterine gene expression. We show that thousands of genes evolved endometrial expression during the origins of mammalian pregnancy, including genes that mediate maternal-fetal communication and immunotolerance. Furthermore, thousands of cis-regulatory elements that mediate decidualization and cell-type identity in decidualized stromal cells are derived from ancient mammalian transposable elements (TEs). Our results indicate that one of the defining mammalian novelties evolved from DNA sequences derived from ancient mammalian TEs coopted into hormone-responsive regulatory elements distributed throughout the genome.
Biology of Reproduction | 2003
Stefan Bauersachs; Helmut Blum; Sylvia Mallok; Hendrik Wenigerkind; Stephanie Rief; Katja Prelle; Eckhard Wolf
Abstract We studied differential gene expression in ipsilateral and contralateral bovine oviduct epithelial cells using a combination of subtracted cDNA libraries and cDNA array hybridization. Four Simmental heifers were synchronized and slaughtered 3.5 days after they entered standing heat. Epithelial cells were isolated from ipsilateral and contralateral oviducts. To identify genes that are differentially regulated in ipsilateral and contralateral epithelium, subtracted cDNA libraries were produced by suppression subtractive hybridization and analyzed by cDNA array hybridization. Sequencing of cDNAs showing differential expression levels in ipsilateral and contralateral epithelium revealed 35 different cDNAs, 30 of which matched genes with known functions and 5 of which matched genes without a known function. The majority of genes (n = 27) were expressed at a higher level in the ipsilateral oviduct, but for some genes (n = 8), mRNA abundance was higher in the contralateral oviduct. The regulated genes or their products include a variety of functional classes such as cell-surface proteins, cell-cell interaction proteins, members of signal transduction pathways, immune-related proteins, and enzymes. Identification of genes differentially regulated in ipsilateral and contralateral oviduct epithelial cells is the first step toward a systematic analysis of local mechanisms that regulate the function of the bovine oviduct epithelium in the postovulation period.
Biology of Reproduction | 2010
Esben Østrup; Stefan Bauersachs; Helmut Blum; Eckhard Wolf; Poul Hyttel
In an attempt to unveil molecular processes controlling the porcine placentation, we have investigated the pregnancy-induced gene expression in the endometrium using the Affymetrix GeneChip Porcine Genome Array. At Day 14 after insemination, at the time of initial placentation, samples were obtained from the endometrium of pregnant sows and sows inseminated with inactivated semen. Analysis of the microarray data revealed 263 genes to be significantly differentially expressed between the pregnant and nonpregnant sows. Most gene ontology terms significantly enriched at pregnancy had allocated more up-regulated genes than down-regulated genes. These terms included developmental process, transporter activity, calcium ion binding, apoptosis, cell motility, enzyme-linked receptor protein signaling pathway, positive regulation of cell proliferation, ion homeostasis, and hormone activity. Only the three terms oxidoreductase activity, lipid metabolic process, and organic acid metabolic process had an overrepresentation of down-regulated genes. A gene interaction network based on the genes identified in the gene ontology term developmental processes identified genes likely to be involved in the process of placentation. Pregnancy-specific localization of IL11RA to the surface epithelium of the endometrium suggests a role of interleukin 11 signaling in formation of the porcine epitheliochorial placenta. Furthermore, up-regulation of FGF9 mRNA in pregnant endometrium and localization of FGF9 to the apical cell domain of the glandular epithelium suggest the concept of endometrial FGF9 acting as an embryonic growth factor in the pig.
Biology of Reproduction | 2012
Stefan Bauersachs; Susanne E. Ulbrich; Horst-Dieter Reichenbach; M. Reichenbach; Mathias Büttner; H. H. D. Meyer; Thomas E. Spencer; Megan Minten; Gerhard Sax; Gerhard Winter; Eckhard Wolf
ABSTRACT Interferon tau (IFNT), a type I IFN similar to alpha IFNs (IFNA), is the pregnancy recognition signal produced by the ruminant conceptus. To elucidate specific effects of bovine IFNT and of other conceptus-derived factors, endometrial gene expression changes during early pregnancy were compared to gene expression changes after intrauterine application of human IFNA2. In experiment 1, endometrial tissue samples were obtained on Day (D) 12, D15, and D18 postmating from nonpregnant or pregnant heifers. In experiment 2, heifers were treated from D14 to D16 of the estrous cycle with an intrauterine device releasing IFNA2 or, as controls, placebo lipid extrudates or PBS only. Endometrial biopsies were performed after flushing the uterus. All samples from both experiments were analyzed with an Affymetrix Bovine Genome Array. Experiment 1 revealed differential gene expression between pregnant and nonpregnant endometria on D15 and D18. In experiment 2, IFNA2 treatment resulted in differential gene expression in the bovine endometrium. Comparison of the data sets from both studies identified genes that were differentially expressed in response to IFNA2 but not in response to pregnancy on D15 or D18. In addition, genes were found that were differentially expressed during pregnancy but not after IFNA2 treatment. In experiment 3, spatiotemporal alterations in expression of selected genes were determined in uteri from nonpregnant and early pregnant heifers using in situ hybridization. The overall findings of this study suggest differential effects of bovine IFNT compared to human IFNA2 and that some pregnancy-specific changes in the endometrium are elicited by conceptus-derived factors other than IFNT.
Biology of Reproduction | 2010
Maximiliane Merkl; Susanne E. Ulbrich; Christiane Otzdorff; Nadja Herbach; R. Wanke; Eckhard Wolf; Johannes Handler; Stefan Bauersachs
Establishment and maintenance of pregnancy in equids is only partially understood. To provide new insights into early events of this process, we performed a systematic analysis of transcriptome changes in the endometrium at Days 8 and 12 of pregnancy. Endometrial biopsy samples from pregnant and nonpregnant stages were taken from the same mares. Composition of the collected biopsy samples was analyzed using quantitative stereological techniques to determine proportions of surface and glandular epithelium and blood vessels. Microarray analysis did not reveal detectable changes in gene expression at Day 8, whereas at Day 12 of pregnancy 374 differentially expressed genes were identified, 332 with higher and 42 with lower transcript levels in pregnant endometrium. Expression of selected genes was validated by quantitative real-time RT-PCR. Gene set enrichment analysis, functional annotation clustering, and cocitation analysis were performed to characterize the genes differentially expressed in Day 12 pregnant endometrium. Many known estrogen-induced genes and genes involved in regulation of estrogen signaling were found, but also genes known to be regulated by progesterone and prostaglandin E2. Additionally, differential expression of a number of genes related to angiogenesis and vascular remodeling suggests an important role of this process. Furthermore, genes that probably have conserved functions across species, such as CRYAB, ERRFI1, FGF9, IGFBP2, NR2F2, STC1, and TNFSF10, were identified. This study revealed the potential target genes and pathways of conceptus-derived estrogens, progesterone, and prostaglandin E2 in the equine endometrium probably involved in the early events of establishment and maintenance of pregnancy in the mare.