Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Bietz is active.

Publication


Featured researches published by Stefan Bietz.


Journal of Cheminformatics | 2014

Protoss: a holistic approach to predict tautomers and protonation states in protein-ligand complexes

Stefan Bietz; Sascha Urbaczek; B. Schulz; Matthias Rarey

AbstractThe calculation of hydrogen positions is a common preprocessing step when working with crystal structures of protein-ligand complexes. An explicit description of hydrogen atoms is generally needed in order to analyze the binding mode of particular ligands or to calculate the associated binding energies. Due to the large number of degrees of freedom resulting from different chemical moieties and the high degree of mutual dependence this problem is anything but trivial. In addition to an efficient algorithm to take care of the complexity resulting from complicated hydrogen bonding networks, a robust chemical model is needed to describe effects such as tautomerism and ionization consistently. We present a novel method for the placement of hydrogen coordinates in protein-ligand complexes which takes tautomers and protonation states of both protein and ligand into account. Our method generates the most probable hydrogen positions on the basis of an optimal hydrogen bonding network using an empirical scoring function. The high quality of our results could be verified by comparison to the manually adjusted Astex diverse set and a remarkably low rate of undesirable hydrogen contacts compared to other tools.


Journal of Chemical Information and Modeling | 2014

Facing the challenges of structure-based target prediction by inverse virtual screening.

Karen T. Schomburg; Stefan Bietz; Hans Briem; Angela M. Henzler; Sascha Urbaczek; Matthias Rarey

Computational target prediction for bioactive compounds is a promising field in assessing off-target effects. Structure-based methods not only predict off-targets, but, simultaneously, binding modes, which are essential for understanding the mode of action and rationally designing selective compounds. Here, we highlight the current open challenges of computational target prediction methods based on protein structures and show why inverse screening rather than sequential pairwise protein-ligand docking methods are needed. A new inverse screening method based on triangle descriptors is introduced: iRAISE (inverse Rapid Index-based Screening Engine). A Scoring Cascade considering the reference ligand as well as the ligand and active site coverage is applied to overcome interprotein scoring noise of common protein-ligand scoring functions. Furthermore, a statistical evaluation of a score cutoff for each individual protein pocket is used. The ranking and binding mode prediction capabilities are evaluated on different datasets and compared to inverse docking and pharmacophore-based methods. On the Astex Diverse Set, iRAISE ranks more than 35% of the targets to the first position and predicts more than 80% of the binding modes with a root-mean-square deviation (RMSD) accuracy of <2.0 Å. With a median computing time of 5 s per protein, large amounts of protein structures can be screened rapidly. On a test set with 7915 protein structures and 117 query ligands, iRAISE predicts the first true positive in a ranked list among the top eight ranks (median), i.e., among 0.28% of the targets.


Journal of Chemical Information and Modeling | 2016

SIENA: Efficient Compilation of Selective Protein Binding Site Ensembles

Stefan Bietz; Matthias Rarey

Structural flexibility of proteins has an important influence on molecular recognition and enzymatic function. In modeling, structure ensembles are therefore often applied as a valuable source of alternative protein conformations. However, their usage is often complicated by structural artifacts and inconsistent data annotation. Here, we present SIENA, a new computational approach for the automated assembly and preprocessing of protein binding site ensembles. Starting with an arbitrarily defined binding site in a single protein structure, SIENA searches for alternative conformations of the same or sequentially closely related binding sites. The method is based on an indexed database for identifying perfect k-mer matches and a recently published algorithm for the alignment of protein binding site conformations. Furthermore, SIENA provides a new algorithm for the interaction-based selection of binding site conformations which aims at covering all known ligand-binding geometries. Various experiments highlight that SIENA is able to generate comprehensive and well selected binding site ensembles improving the compatibility to both known and unconsidered ligand molecules. Starting with the whole PDB as data source, the computation time of the whole ensemble generation takes only a few seconds. SIENA is available via a Web service at www.zbh.uni-hamburg.de/siena .


Journal of Chemical Information and Modeling | 2015

ASCONA: Rapid Detection and Alignment of Protein Binding Site Conformations

Stefan Bietz; Matthias Rarey

The usage of conformational ensembles constitutes a widespread technique for the consideration of protein flexibility in computational biology. When experimental structures are applied for this purpose, alignment techniques are usually required in dealing with structural deviations and annotation inconsistencies. Moreover, many application scenarios focus on protein ligand binding sites. Here, we introduce our new alignment algorithm ASCONA that has been specially geared to the problem of aligning multiple conformations of sequentially similar binding sites. Intense efforts have been directed to an accurate detection of highly flexible backbone deviations, multiple binding site matches within a single structure, and a reliable, but at the same time highly efficient, search algorithm. In contrast, most available alignment methods rather target other issues, e.g., the global alignment of distantly related proteins that share structurally conserved regions. For conformational ensembles, this might not only result in an overhead of computation time but could also affect the achieved accuracy, especially for more complicated cases as highly flexible proteins. ASCONA was evaluated on a test set containing 1107 structures of 65 diverse proteins. In all cases, ASCONA was able to correctly align the binding site at an average alignment computation time of 4 ms per target. Furthermore, no false positive matches were observed when searching the same query sites in the structures of other proteins. ASCONA proved to cope with highly deviating backbone structures and to tolerate structural gaps and moderate mutation rates. ASCONA is available free of charge for academic use at http://www.zbh.uni-hamburg.de/ascona .


Nucleic Acids Research | 2017

ProteinsPlus: a web portal for structure analysis of macromolecules

Rainer Fährrolfes; Stefan Bietz; Florian Flachsenberg; Agnes Meyder; Eva Nittinger; Thomas Otto; Andrea Volkamer; Matthias Rarey

Abstract With currently more than 126 000 publicly available structures and an increasing growth rate, the Protein Data Bank constitutes a rich data source for structure-driven research in fields like drug discovery, crop science and biotechnology in general. Typical workflows in these areas involve manifold computational tools for the analysis and prediction of molecular functions. Here, we present the ProteinsPlus web server that offers a unified easy-to-use interface to a broad range of tools for the early phase of structure-based molecular modeling. This includes solutions for commonly required pre-processing tasks like structure quality assessment (EDIA), hydrogen placement (Protoss) and the search for alternative conformations (SIENA). Beyond that, it also addresses frequent problems as the generation of 2D-interaction diagrams (PoseView), protein–protein interface classification (HyPPI) as well as automatic pocket detection and druggablity assessment (DoGSiteScorer). The unified ProteinsPlus interface covering all featured approaches provides various facilities for intuitive input and result visualization, case-specific parameterization and download options for further processing. Moreover, its generalized workflow allows the user a quick familiarization with the different tools. ProteinsPlus also stores the calculated results temporarily for future request and thus facilitates convenient result communication and re-access. The server is freely available at http://proteins.plus.


Journal of Chemical Information and Modeling | 2016

UNICON: A Powerful and Easy-to-Use Compound Library Converter

Kai Sommer; Nils-Ole Friedrich; Stefan Bietz; Matthias Hilbig; Therese Inhester; Matthias Rarey

The accurate handling of different chemical file formats and the consistent conversion between them play important roles for calculations in complex cheminformatics workflows. Working with different cheminformatic tools often makes the conversion between file formats a mandatory step. Such a conversion might become a difficult task in cases where the information content substantially differs. This paper describes UNICON, an easy-to-use software tool for this task. The functionality of UNICON ranges from file conversion between standard formats SDF, MOL2, SMILES, PDB, and PDBx/mmCIF via the generation of 2D structure coordinates and 3D structures to the enumeration of tautomeric forms, protonation states, and conformer ensembles. For this purpose, UNICON bundles the key elements of the previously described NAOMI library in a single, easy-to-use command line tool.


Journal of Medicinal Chemistry | 2017

Large-Scale Analysis of Hydrogen Bond Interaction Patterns in Protein–Ligand Interfaces

Eva Nittinger; Therese Inhester; Stefan Bietz; Agnes Meyder; Karen T. Schomburg; Gudrun Lange; Robert Klein; Matthias Rarey

Protein-ligand interactions are the fundamental basis for molecular design in pharmaceutical research, biocatalysis, and agrochemical development. Especially hydrogen bonds are known to have special geometric requirements and therefore deserve a detailed analysis. In modeling approaches a more general description of hydrogen bond geometries, using distance and directionality, is applied. A first study of their geometries was performed based on 15 protein structures in 1982. Currently there are about 95 000 protein-ligand structures available in the PDB, providing a solid foundation for a new large-scale statistical analysis. Here, we report a comprehensive investigation of geometric and functional properties of hydrogen bonds. Out of 22 defined functional groups, eight are fully in accordance with theoretical predictions while 14 show variations from expected values. On the basis of these results, we derived interaction geometries to improve current computational models. It is expected that these observations will be useful in designing new chemical structures for biological applications.


Journal of Chemical Information and Modeling | 2017

Index-Based Searching of Interaction Patterns in Large Collections of Protein–Ligand Interfaces

Therese Inhester; Stefan Bietz; Matthias Hilbig; Robert Schmidt; Matthias Rarey

Comparison of three-dimensional interaction patterns in large collections of protein-ligand interfaces is a key element for understanding protein-ligand interactions and supports various steps in the structure-based drug design process. Different methods exist that provide query systems to search for geometrical patterns in protein-ligand complexes. However, these tools do not meet all of the requirements, which are high query variability, an adjustable search set, and high retrieval speed. Here we present a new tool named PELIKAN that is able to search for a variety of geometrical queries in large protein structure collections in a reasonably short time. The data are stored in an SQLite database that can easily be constructed from any set of protein-ligand complexes. We present different test queries demonstrating the performance of the PELIKAN approach. Furthermore, two application scenarios show the usefulness of PELIKAN in structure-based design endeavors.


Journal of Chemical Information and Modeling | 2015

Discriminative Chemical Patterns: Automatic and Interactive Design

Stefan Bietz; Karen T. Schomburg; Matthias Hilbig; Matthias Rarey

The classification of molecules with respect to their inhibiting, activating, or toxicological potential constitutes a central aspect in the field of cheminformatics. Often, a discriminative feature is needed to distinguish two different molecule sets. Besides physicochemical properties, substructures and chemical patterns belong to the descriptors most frequently applied for this purpose. As a commonly used example of this descriptor class, SMARTS strings represent a powerful concept for the representation and processing of abstract chemical patterns. While their usage facilitates a convenient way to apply previously derived classification rules on new molecule sets, the manual generation of useful SMARTS patterns remains a complex and time-consuming process. Here, we introduce SMARTSminer, a new algorithm for the automatic derivation of discriminative SMARTS patterns from preclassified molecule sets. Based on a specially adapted subgraph mining algorithm, SMARTSminer identifies structural features that are frequent in only one of the given molecule classes. In comparison to elemental substructures, it also supports the consideration of general and specific SMARTS features. Furthermore, SMARTSminer is integrated into an interactive pattern editor named SMARTSeditor. This allows for an intuitive visualization on the basis of the SMARTSviewer concept as well as interactive adaption and further improvement of the generated patterns. Additionally, a new molecular matching feature provides an immediate feedback on a patterns matching behavior across the molecule sets. We demonstrate the utility of the SMARTSminer functionality and its integration into the SMARTSeditor software in several different classification scenarios.


Molecular Informatics | 2016

The Art of Compiling Protein Binding Site Ensembles.

Stefan Bietz; Rainer Fährrolfes; Matthias Rarey

Structure‐based drug design starts with the collection, preparation, and initial analysis of protein structures. With more than 115,000 structures publically available in the Protein Data Bank (PDB), fully automated processes reliably performing these important preprocessing steps are needed. Several tools are available for these tasks, however, most of them do not address the special needs of scientists interested in protein‐ligand interactions. In this paper, we summarize our research activities towards an automated processing pipeline from raw PDB data towards ready‐to‐use protein binding site ensembles. Starting from a single protein structure, the pipeline covers the following phases: Extracting structurally related binding sites from the PDB, aligning disconnected binding site sequences, resolving tautomeric forms and protonation, orienting hydrogens and flippable side‐chains, structurally aligning the multitude of binding sites, and performing a reasonable reduction of ensemble structures. The pipeline, named SIENA, creates protein‐structural ensembles for the analysis of protein flexibility, molecular design efforts like docking or de novo design within seconds. For the first time, we are able to process the whole PDB in order to create a large collection of protein binding site ensembles. SIENA is available as part of the ZBH ProteinsPlus webserver under http://proteinsplus.zbh.uni‐hamburg.de.

Collaboration


Dive into the Stefan Bietz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge