Stefan Böhringer
Leiden University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefan Böhringer.
Human Molecular Genetics | 2014
Joris Deelen; Marian Beekman; Hae-Won Uh; Linda Broer; Kristin L. Ayers; Qihua Tan; Yoichiro Kamatani; Anna M. Bennet; Riin Tamm; Stella Trompet; Daníel F. Guðbjartsson; Friederike Flachsbart; Giuseppina Rose; Alexander Viktorin; Krista Fischer; Marianne Nygaard; Heather J. Cordell; Paolina Crocco; Erik B. van den Akker; Stefan Böhringer; Quinta Helmer; Christopher P. Nelson; Gary Saunders; Maris Alver; Karen Andersen-Ranberg; Marie E. Breen; Ruud van der Breggen; Amke Caliebe; Miriam Capri; Elisa Cevenini
The genetic contribution to the variation in human lifespan is ∼25%. Despite the large number of identified disease-susceptibility loci, it is not known which loci influence population mortality. We performed a genome-wide association meta-analysis of 7729 long-lived individuals of European descent (≥85 years) and 16 121 younger controls (<65 years) followed by replication in an additional set of 13 060 long-lived individuals and 61 156 controls. In addition, we performed a subset analysis in cases aged ≥90 years. We observed genome-wide significant association with longevity, as reflected by survival to ages beyond 90 years, at a novel locus, rs2149954, on chromosome 5q33.3 (OR = 1.10, P = 1.74 × 10−8). We also confirmed association of rs4420638 on chromosome 19q13.32 (OR = 0.72, P = 3.40 × 10−36), representing the TOMM40/APOE/APOC1 locus. In a prospective meta-analysis (n = 34 103), the minor allele of rs2149954 (T) on chromosome 5q33.3 associates with increased survival (HR = 0.95, P = 0.003). This allele has previously been reported to associate with low blood pressure in middle age. Interestingly, the minor allele (T) associates with decreased cardiovascular mortality risk, independent of blood pressure. We report on the first GWAS-identified longevity locus on chromosome 5q33.3 influencing survival in the general European population. The minor allele of this locus associates with low blood pressure in middle age, although the contribution of this allele to survival may be less dependent on blood pressure. Hence, the pleiotropic mechanisms by which this intragenic variation contributes to lifespan regulation have to be elucidated.
PLOS Genetics | 2013
Eleonora Porcu; Marco Medici; Giorgio Pistis; Claudia B. Volpato; Scott G. Wilson; Anne R. Cappola; S.D. Bos; Joris Deelen; Martin den Heijer; Rachel M. Freathy; Jari Lahti; Chunyu Liu; Lorna M. Lopez; Ilja M. Nolte; Jeffrey R. O'Connell; Toshiko Tanaka; Stella Trompet; Alice M. Arnold; Stefania Bandinelli; Marian Beekman; Stefan Böhringer; Suzanne J. Brown; Brendan M. Buckley; Clara Camaschella; Anton J. M. de Craen; Gail Davies; Marieke de Visser; Ian Ford; Tom Forsén; Timothy M. Frayling
Thyroid hormone is essential for normal metabolism and development, and overt abnormalities in thyroid function lead to common endocrine disorders affecting approximately 10% of individuals over their life span. In addition, even mild alterations in thyroid function are associated with weight changes, atrial fibrillation, osteoporosis, and psychiatric disorders. To identify novel variants underlying thyroid function, we performed a large meta-analysis of genome-wide association studies for serum levels of the highly heritable thyroid function markers TSH and FT4, in up to 26,420 and 17,520 euthyroid subjects, respectively. Here we report 26 independent associations, including several novel loci for TSH (PDE10A, VEGFA, IGFBP5, NFIA, SOX9, PRDM11, FGF7, INSR, ABO, MIR1179, NRG1, MBIP, ITPK1, SASH1, GLIS3) and FT4 (LHX3, FOXE1, AADAT, NETO1/FBXO15, LPCAT2/CAPNS2). Notably, only limited overlap was detected between TSH and FT4 associated signals, in spite of the feedback regulation of their circulating levels by the hypothalamic-pituitary-thyroid axis. Five of the reported loci (PDE8B, PDE10A, MAF/LOC440389, NETO1/FBXO15, and LPCAT2/CAPNS2) show strong gender-specific differences, which offer clues for the known sexual dimorphism in thyroid function and related pathologies. Importantly, the TSH-associated loci contribute not only to variation within the normal range, but also to TSH values outside the reference range, suggesting that they may be involved in thyroid dysfunction. Overall, our findings explain, respectively, 5.64% and 2.30% of total TSH and FT4 trait variance, and they improve the current knowledge of the regulation of hypothalamic-pituitary-thyroid axis function and the consequences of genetic variation for hypo- or hyperthyroidism.
European Journal of Human Genetics | 2004
Özge Altug Teber; Gabriele Gillessen-Kaesbach; Sven Fischer; Stefan Böhringer; Beate Albrecht; Angelika Albert; Mine Arslan-Kirchner; Eric Haan; Monika Hagedorn-Greiwe; Christof Hammans; Wolfram Henn; Georg Klaus Hinkel; Rainer König; Erdmute Kunstmann; Jürgen Kunze; Luitgard M. Neumann; Eva-Christina Prott; Anita Rauch; Hans-Dieter Rott; Heide Seidel; Stephanie Spranger; Martin Sprengel; Barbara Zoll; Dietmar R. Lohmann; Dagmar Wieczorek
To define the range of phenotypic expression in Treacher Collins syndrome (TCS; Franceschetti–Klein syndrome), we performed mutation analysis in the TCOF1 gene in 46 patients with tentative diagnosis of TCS and evaluated the clinical data, including a scoring system. A total of 27 coding exons of TCOF1 and adjacent splice junctions were analysed by direct sequencing. In 36 patients with a clinically unequivocal diagnosis of TCS, we detected 28 pathogenic mutations, including 25 novel alterations. No mutation was identified in the remaining eight patients with unequivocal diagnosis of TCS and 10 further patients, in whom the referring diagnosis of TCS was clinically doubtful. There is no overt genotype–phenotype correlation except that conductive deafness is significantly less frequent in patients with mutations in the 3′ part of the open reading frame. Inter- and intrafamilial variation is wide. Some mutation carriers, parents of typically affected patients, are so mildly affected that the diagnosis might be overlooked clinically. This suggests that modifying factors are important for phenotypic expression. Based on these findings, minimal diagnostic criteria were defined: downward slanting palpebral fissures and hypoplasia of the zygomatic arch. The difficulties in genetic counselling, especially diagnosis of family members with a mild phenotype, are described.
Human Molecular Genetics | 2013
Dagmar Wieczorek; Nina Bögershausen; Filippo Beleggia; Sabine Steiner-Haldenstätt; Esther Pohl; Yun Li; Esther Milz; Marcel Martin; Holger Thiele; Janine Altmüller; Yasemin Alanay; Hülya Kayserili; Ludger Klein-Hitpass; Stefan Böhringer; Andreas Wollstein; Beate Albrecht; Koray Boduroglu; Almuth Caliebe; Krystyna H. Chrzanowska; Ozgur Cogulu; Francesca Cristofoli; Johanna Christina Czeschik; Koenraad Devriendt; Maria Teresa Dotti; Nursel Elcioglu; Blanca Gener; Timm O. Goecke; Małgorzata Krajewska-Walasek; Encarnación Guillén-Navarro; Joussef Hayek
Chromatin remodeling complexes are known to modify chemical marks on histones or to induce conformational changes in the chromatin in order to regulate transcription. De novo dominant mutations in different members of the SWI/SNF chromatin remodeling complex have recently been described in individuals with Coffin-Siris (CSS) and Nicolaides-Baraitser (NCBRS) syndromes. Using a combination of whole-exome sequencing, NGS-based sequencing of 23 SWI/SNF complex genes, and molecular karyotyping in 46 previously undescribed individuals with CSS and NCBRS, we identified a de novo 1-bp deletion (c.677delG, p.Gly226Glufs*53) and a de novo missense mutation (c.914G>T, p.Cys305Phe) in PHF6 in two individuals diagnosed with CSS. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex implicating dysfunction of a second chromatin remodeling complex in the pathogenesis of CSS-like phenotypes. Altogether, we identified mutations in 60% of the studied individuals (28/46), located in the genes ARID1A, ARID1B, SMARCB1, SMARCE1, SMARCA2, and PHF6. We show that mutations in ARID1B are the main cause of CSS, accounting for 76% of identified mutations. ARID1B and SMARCB1 mutations were also found in individuals with the initial diagnosis of NCBRS. These individuals apparently belong to a small subset who display an intermediate CSS/NCBRS phenotype. Our proposed genotype-phenotype correlations are important for molecular screening strategies.
Age | 2013
Joris Deelen; Hae-Won Uh; Ramin Monajemi; Diana van Heemst; Peter E. Thijssen; Stefan Böhringer; Erik B. van den Akker; Anton J. M. de Craen; Fernando Rivadeneira; André G. Uitterlinden; Rudi G. J. Westendorp; Jelle J. Goeman; P. Eline Slagboom; Jeanine J. Houwing-Duistermaat; Marian Beekman
In genome-wide association studies (GWAS) of complex traits, single SNP analysis is still the most applied approach. However, the identified SNPs have small effects and provide limited biological insight. A more appropriate approach to interpret GWAS data of complex traits is to analyze the combined effect of a SNP set grouped per pathway or gene region. We used this approach to study the joint effect on human longevity of genetic variation in two candidate pathways, the insulin/insulin-like growth factor (IGF-1) signaling (IIS) pathway and the telomere maintenance (TM) pathway. For the analyses, we used genotyped GWAS data of 403 unrelated nonagenarians from long-lived sibships collected in the Leiden Longevity Study and 1,670 younger population controls. We analyzed 1,021 SNPs in 68 IIS pathway genes and 88 SNPs in 13 TM pathway genes using four self-contained pathway tests (PLINK set-based test, Global test, GRASS and SNP ratio test). Although we observed small differences between the results of the different pathway tests, they showed consistent significant association of the IIS and TM pathway SNP sets with longevity. Analysis of gene SNP sets from these pathways indicates that the association of the IIS pathway is scattered over several genes (AKT1, AKT3, FOXO4, IGF2, INS, PIK3CA, SGK, SGK2, and YWHAG), while the association of the TM pathway seems to be mainly determined by one gene (POT1). In conclusion, this study shows that genetic variation in genes involved in the IIS and TM pathways is associated with human longevity.
Nature Communications | 2015
Harmen H. M. Draisma; René Pool; Michael Kobl; Rick Jansen; Ann-Kristin Petersen; Anika A.M. Vaarhorst; Idil Yet; Toomas Haller; Ayse Demirkan; Tonu Esko; Gu Zhu; Stefan Böhringer; Marian Beekman; Jan B. van Klinken; Werner Römisch-Margl; Cornelia Prehn; Jerzy Adamski; Anton J. M. de Craen; Elisabeth M. van Leeuwen; Najaf Amin; Harish Dharuri; Harm-Jan Westra; Lude Franke; Eco J. C. de Geus; Jouke-Jan Hottenga; Gonneke Willemsen; Anjali K. Henders; Grant W. Montgomery; Dale R. Nyholt; John Whitfield
Metabolites are small molecules involved in cellular metabolism, which can be detected in biological samples using metabolomic techniques. Here we present the results of genome-wide association and meta-analyses for variation in the blood serum levels of 129 metabolites as measured by the Biocrates metabolomic platform. In a discovery sample of 7,478 individuals of European descent, we find 4,068 genome- and metabolome-wide significant (Z-test, P < 1.09 × 10(-9)) associations between single-nucleotide polymorphisms (SNPs) and metabolites, involving 59 independent SNPs and 85 metabolites. Five of the fifty-nine independent SNPs are new for serum metabolite levels, and were followed-up for replication in an independent sample (N = 1,182). The novel SNPs are located in or near genes encoding metabolite transporter proteins or enzymes (SLC22A16, ARG1, AGPS and ACSL1) that have demonstrated biomedical or pharmaceutical importance. The further characterization of genetic influences on metabolic phenotypes is important for progress in biological and medical research.
Circulation-cardiovascular Genetics | 2012
Anika A.M. Vaarhorst; Yingchang Lu; Bastiaan T. Heijmans; Martijn E.T. Dollé; Stefan Böhringer; Hein Putter; Sandra Imholz; Audrey H.H. Merry; Marleen M. J. van Greevenbroek; J. Wouter Jukema; Anton P.M. Gorgels; Piet A. van den Brandt; Michael Müller; Leo J. Schouten; Edith J. M. Feskens; Jolanda M. A. Boer; P. Eline Slagboom
Background— Genome-wide association studies (GWAS) have identified many single-nucleotide polymorphisms (SNPs) associated with coronary heart disease (CHD) or CHD risk factors (RF). Using a case-cohort study within the prospective Cardiovascular Registry Maastricht (CAREMA) cohort, we tested if genetic risk scores (GRS) based on GWAS-identified SNPs are associated with and predictive for future CHD. Methods and Results— Incident cases (n=742), that is, participants who developed CHD during a median follow-up of 12.1 years (range, 0.0–16.9 years), were compared with a randomly selected subcohort of 2221 participants selected from the total cohort (n=21 148). We genotyped 179 SNPs previously associated with CHD or CHD RF in GWAS as published up to May 2, 2011. The allele-count GRS, composed of all SNPs, the 153 RF SNPs, or the 29 CHD SNPs were not associated with CHD independent of CHD RF. The weighted 29 CHD SNP GRS, with weights obtained from GWAS for every SNP, were associated with CHD independent of CHD RF (hazard ratio, 1.12 per weighted risk allele; 95% confidence interval, 1.04–1.21) and improved risk reclassification with 2.8% (P=0.031). As an exploratory approach to achieve weighting, we performed least absolute shrinkage and selection operator (LASSO) regression analysis on all SNPs and the CHD SNPs. The CHD LASSO GRS performed equal to the weighted CHD GRS, whereas the Overall LASSO GRS performed slightly better than the weighted CHD GRS. Conclusions— A GRS composed of CHD SNPs improves risk prediction when adjusted for the effect sizes of the SNPs. Alternatively LASSO regression analysis may be used to achieve weighting; however, validation in independent populations is required.Background— Genome-wide association studies (GWAS) have identified many single-nucleotide polymorphisms (SNPs) associated with coronary heart disease (CHD) or CHD risk factors (RF). Using a case-cohort study within the prospective Cardiovascular Registry Maastricht (CAREMA) cohort, we tested if genetic risk scores (GRS) based on GWAS-identified SNPs are associated with and predictive for future CHD. Methods and Results— Incident cases (n=742), that is, participants who developed CHD during a median follow-up of 12.1 years (range, 0.0–16.9 years), were compared with a randomly selected subcohort of 2221 participants selected from the total cohort (n=21 148). We genotyped 179 SNPs previously associated with CHD or CHD RF in GWAS as published up to May 2, 2011. The allele-count GRS, composed of all SNPs, the 153 RF SNPs, or the 29 CHD SNPs were not associated with CHD independent of CHD RF. The weighted 29 CHD SNP GRS, with weights obtained from GWAS for every SNP, were associated with CHD independent of CHD RF (hazard ratio, 1.12 per weighted risk allele; 95% confidence interval, 1.04–1.21) and improved risk reclassification with 2.8% ( P =0.031). As an exploratory approach to achieve weighting, we performed least absolute shrinkage and selection operator (LASSO) regression analysis on all SNPs and the CHD SNPs. The CHD LASSO GRS performed equal to the weighted CHD GRS, whereas the Overall LASSO GRS performed slightly better than the weighted CHD GRS. Conclusions— A GRS composed of CHD SNPs improves risk prediction when adjusted for the effect sizes of the SNPs. Alternatively LASSO regression analysis may be used to achieve weighting; however, validation in independent populations is required.
Journal of Neurology, Neurosurgery, and Psychiatry | 2015
Janneke C. van den Bergen; Monika Hiller; Stefan Böhringer; Linda Vijfhuizen; H.B. Ginjaar; Amina Chaouch; Kate Bushby; Volker Straub; M. Scoto; Sebahattin Cirak; Véronique Humbertclaude; Mireille Claustres; C. Scotton; Chiara Passarelli; Hanns Lochmüller; Francesco Muntoni; Sylvie Tuffery-Giraud; Alessandra Ferlini; Annemieke Aartsma-Rus; Jan J. Verschuuren; Peter A. C. 't Hoen; Pietro Spitali
Objective Duchenne muscular dystrophy (DMD) is characterised by progressive muscle weakness. It has recently been reported that single nucleotide polymorphisms (SNPs) located in the SPP1 and LTBP4 loci can account for some of the inter-individual variability observed in the clinical disease course. The validation of genetic association in large independent cohorts is a key process for rare diseases in order to qualify prognostic biomarkers and stratify patients in clinical trials. Methods Duchenne patients from five European neuromuscular centres were included. Information about age at wheelchair dependence and steroid use was gathered. Melting curve analysis of PCR fragments or Sanger sequencing were used to genotype SNP rs28357094 in the SPP1 gene in 336 patients. The genotype of SNPs rs2303729, rs1131620, rs1051303 and rs10880 in the LTBP4 locus was determined in 265 patients by mass spectrometry. For both loci, a multivariate analysis was performed, using genotype/haplotype, steroid use and cohort as covariates. Results We show that corticosteroid treatment and the IAAM haplotype of the LTBP4 gene are significantly associated with prolonged ambulation in patients with DMD. There was no significant association between the SNP rs28357094 in the SPP1 gene and the age of ambulation loss. Conclusions This study underlines the importance of replicating genetic association studies for rare diseases in large independent cohorts to identify the most robust associations. We anticipate that genotyping of validated genetic associations will become important for the design and interpretation of clinical trials.
Diabetes | 2010
Antien L. Mooyaart; Ana Zutinic; Stephan J. L. Bakker; Diana C. Grootendorst; Nanne Kleefstra; Irene G. M. van Valkengoed; Stefan Böhringer; Henk J. G. Bilo; Friedo W. Dekker; Jan A. Bruijn; Gerjan Navis; Bart Janssen; Hans J. Baelde; Emile de Heer
OBJECTIVE The 5-5 homozygous CNDP1 (carnosinase) genotype is associated with a reduced risk of diabetic nephropathy. We investigated whether this association is sex specific and independent of susceptibility for type 2 diabetes. RESEARCH DESIGN AND METHODS Three separate groups of 114, 90, and 66 patients with type 2 diabetes and diabetic nephropathy were included in this study and compared with 93 patients with type 2 diabetes for >15 years without diabetic nephropathy and 472 population control subjects. The diabetes control group was used to determine an association in the three patient groups separately, and the population control group was used to estimate the genotype risk [odds ratio (CI)] for the population in a pooled analysis. The population control subjects were also compared with 562 patients with type 2 diabetes without diabetic nephropathy to determine whether the association was independent of type 2 diabetes. The CNDP1 genotype was determined by fragment analysis after PCR amplification. RESULTS The frequency of the 5-5 homozygous genotype was 28, 36, and 41% in the three diabetic nephropathy patient groups and 43 and 42% in the diabetic and population control subjects, respectively. The 5-5 homozygous genotype occurred significantly less frequently in women in all three patient groups compared with diabetic control subjects. The genotype risk for the population was estimated to be 0.5 (0.30–0.68) in women and 1.2 (0.77–1.69) in men. The 562 patients with type 2 diabetes without diabetic nephropathy did not differ from the general population (P = 0.23). CONCLUSIONS This study suggests that the association between the CNDP1 gene and diabetic nephropathy is sex specific and independent of susceptibility for type 2 diabetes.
Annals of the Rheumatic Diseases | 2014
Y.F. Ramos; S.D. Bos; N. Lakenberg; Stefan Böhringer; Wouter den Hollander; Margreet Kloppenburg; P. Eline Slagboom; Ingrid Meulenbelt
Objective To identify novel gene expression networks in blood of osteoarthritis patients compared to controls. Methods A comprehensive exploration of gene expression in peripheral blood was performed by microarray analysis for a subset of osteoarthritis patients from the Genetics osteoARthritis and Progression (GARP) study in comparison with sex and age-matched healthy controls. To identify pathways, we performed gene enrichment analyses (database for annotation, visualisation and integrated discovery and search tool for the retrieval of interacting genes). Quantitative PCR analysis in overlapping and in additional osteoarthritis samples was performed for prioritised genes to validate and replicate findings. Classification of cases and controls was explored by applying statistical models. Results 741 probes representing 694 unique genes were differentially expressed between cases and controls, including 86 genes expressed with at least a 1.5-fold difference. ATF4, GPR18 and H3F3B were among the top genes identified (p<4.5 × 10−8). We found that in the blood of osteoarthritis patients the apoptosis pathway, including the well-known gene CASP3, was significantly enriched among the differentially expressed genes. Our findings were validated in independent samples and when using a small subset of the validated genes, we could accurately distinguish patients from controls (area under the curve 98%). Conclusions In the current study, we have identified specific gene expression networks, in the easily accessible tissue blood, which associated consistently with osteoarthritis among GARP study cases. Our data further hint at the relevance of apoptosis as an aetiological factor in osteoarthritis onset, thereby qualifying expression profiling of blood as a useful tool to understand the underlying molecular mechanisms of osteoarthritis.