Stefan Bringezu
University of Kassel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefan Bringezu.
Journal of Industrial Ecology | 2011
Marina Fischer-Kowalski; Fridolin Krausmann; Stefan Giljum; Stephan Lutter; Andreas Mayer; Stefan Bringezu; Yuichi Moriguchi; Helmut Schütz; Heinz Schandl; Helga Weisz
Summary This contribution presents the state of the art of economywide material flow accounting. Starting from a brief recollection of the intellectual and policy history of this approach, we outline system definition, key methodological assumptions, and derived indicators. The next section makes an effort to establish data reliability and uncertainty for a number of existing multinational (European and global) material flow accounting (MFA) data compilations and discusses sources of inconsistencies and variations for some indicators and trends. The results show that the methodology has reached a certain maturity: Coefficients of variation between databases lie in the range of 10% to 20%, and correlations between databases across countries amount to an average R 2 of 0.95. After discussing some of the research frontiers for further methodological development, we conclude that the material flow accounting framework and the data generated have reached a maturity that warrants material flow indicators to complement traditional economic and demographic information in providing a sound basis for discussing national and international policies for sustainable resource use.
Journal of Industrial Ecology | 2003
Stefan Bringezu; Helmut Schütz; Stephan Moll
Summary Economy-wide material flow analysis (MFA) and derived indicators have been developed to monitor and assess the metabolic performance of economies, that is, with respect to the internal economic flows and the exchange of materials with the environment and with other economies. Indicators such as direct material input (DMI) and direct material consumption (DMC) measure material use related to either production or consumption. Domestic hidden flows (HF) account for unused domestic extraction, and foreign HF represent the upstream primary resource requirements of the imports. DMI and domestic and foreign HF account for the total material requirement (TMR) of an economy. Subtracting the exports and their HF provides the total material consumption (TMC). DMI and TMR are used to measure the (de-) coupling of resource use and economic growth, providing the basis for resource efficiency indicators. Accounting for TMR allows detection of shifts from domestic to foreign resource requirements. Net addition to stock (NAS) measures the physical growth of an economy. It indicates the distance from flow equilibrium of inputs and outputs that may be regarded as a necessary condition of a sustainable mature metabolism. We discuss the extent to which MFA-based indicators can also be used to assess the environmental performance. For that purpose we consider different impacts of material flows, and different scales and perspectives of the analysis, and distinguish between turnover-based indicators of generic environmental pressure and impact-based indicators of specific environmental pressure. Indicators such as TMR and TMC are regarded as generic pressure indicators that may not be used to indicate specific environmental impacts. The TMR of industrial countries is discussed with respect to the question of whether volume and composition may be regarded as unsustainable.
Journal of Industrial Ecology | 2012
Martin Weiss; Juliane Haufe; Michael Carus; Miguel Brandão; Stefan Bringezu; Barbara G. Hermann; Martin Kumar Patel
Concerns over climate change and the security of industrial feedstock supplies have been opening a growing market for biobased materials. This development, however, also presents a challenge to scientists, policy makers, and industry because the production of biobased materials requires land and is typically associated with adverse environmental effects. This article addresses the environmental impacts of biobased materials in a meta‐analysis of 44 life cycle assessment (LCA) studies. The reviewed literature suggests that one metric ton (t) of biobased materials saves, relative to conventional materials, 55 ± 34 gigajoules of primary energy and 3 ± 1 t carbon dioxide equivalents of greenhouse gases. However, biobased materials may increase eutrophication by 5 ± 7 kilograms (kg) phosphate equivalents/t and stratospheric ozone depletion by 1.9 ± 1.8 kg nitrous oxide equivalents/t. Our findings are inconclusive with regard to acidification (savings of 2 ± 20 kg sulfur dioxide equivalents/t) and photochemical ozone formation (savings of 0.3 ± 2.4 kg ethene equivalents/t). The variability in the results of life cycle assessment studies highlights the difficulties in drawing general conclusions. Still, common to most biobased materials are impacts caused by the application of fertilizers and pesticides during industrial biomass cultivation. Additional land use impacts, such as the potential loss of biodiversity, soil carbon depletion, soil erosion, deforestation, as well as greenhouse gas emissions from indirect land use change are not quantified in this review. Clearly these impacts should be considered when evaluating the environmental performance of biobased materials.
Archive | 2017
Stefan Bringezu; Raimund Bleischwitz
This work explores radical perspectives on how the global economy should use natural resources in intelligent ways. It is based on research by Germanys Wuppertal Institute.
Journal of Industrial Ecology | 2009
Mathieu Saurat; Stefan Bringezu
A model of the use of the platinum group metals (PGMs) platinum, palladium, and rhodium in Europe has been developed and combined with a model of the environmental pressures related to PGM production. Compared to the base case presented in Part I of this pair of articles, potential changes in PGM production and use are quantified with regard to cumulative and yearly environmental impacts and PGM resource use, for the period 20052020. Reducing sulfur dioxide (SO) emissions of PGM producer Norilsk Nickel could cut the cumulative SO emissions associated with the use of PGMs in Europe by 35%. Cleaner electricity generation in South Africa could reduce cumulative SO emissions by another 9%. Increasing the recycling rate of end-of-life catalytic converters to 70% in 2020 could save 15% of the cumulative primary PGM input into car catalysts and 10% of the SO emissions associated with PGM production. In 2020, PGM requirements and SO emissions would be, respectively, 40% and 22% lower than the base case. Substituting palladium for part of the platinum in diesel catalysts, coupled with a probable palladium price increase, could imply 15% more cumulative SO emissions if recycling rates do not increase. A future large-scale introduction of fuel cell vehicles would require technological improvements to significantly reduce the PGM content of the fuel cell stack. The basic design of such vehicles greatly influences the vehicle power, a key parameter in determining the total PGM requirement.
Journal of Industrial Ecology | 2008
Mathieu Saurat; Stefan Bringezu
In this article, we analyze flows of the platinum group metals (PGMs) platinum, palladium, and rhodium and the environmental impacts associated with their supply in Europe. A model of the use of PGMs in Europe has been developed, and this is combined with a model of environmental pressures related to PGM production. Seven industrial sectors and product groups form the main users of PGMs in Europe, comprising the chemical, petroleum, and glass industries; jewelry, dentistry, electronic equipment, and car catalysts. Most relevant environmental impacts of secondary production in Europe and primary PGM production in South Africa, Russia, and Canada are taken into account, including emissions of sulphur dioxide and carbon dioxide and total material requirement. The article quantifies the PGM flows to, from, and within Europe in 2004. The automotive industry is the single largest user of primary PGMs, and catalytic converters represent the major PGM end use. The chemical and glass industries also require large amounts of PGM but rely mostly on secondary metals. The environmental impacts of primary production exceed those of secondary production by far. An analysis of the use of car catalytic converters shows that as a result of efforts to reduce air pollutant emissions in Europe, other negative environmental impacts, such as point-source pollution and mining waste, are occurring elsewhere - for example, at extraction and refining sites in Siberia and South Africa.
Archive | 1998
Stefan Bringezu; Ralf Behrensmeier; Helmut Schütz
The environmental performance of human activities is largely determined by the quantity and quality of the associated material flows. The extraction of raw materials, on the one hand, and the emissions of waste materials on the other, exert pressures on the environment. The material input to the economy (from nature) and the material output to the environment (from the economy) can be accounted for in a balanced manner. Based on recent data on the overall material flow account of Germany, the policy relevant information that can be derived from such kinds of physical satellite accounts is described. In order to avoid a shifting of environmental problems to other regions, the linkage of material flows with the production of imports and exports (their ‘ecological rucksacks’) have to be considered.
Minerals & Energy - Raw Materials Report | 2008
Raimund Bleischwitz; Stefan Bringezu
This article introduces elements of a global governance regime for sustainable resource management. It argues that such an approach is needed to combat the negative impacts arising from resource extraction and use as well as to overcome the co‐ordination problems of decentralized action. A first section summarizes main conflicts arising from limited access to natural resources and security of supply, environmental impacts and the performance of resource‐rich developing countries. A second section analyses existing initiatives for sustainable resource management such as resource funds, efforts to increase transparency, programmes in development co‐operation, standards and certification, material efficiency and resource productivity as well as efforts to limit the consumption of natural resources. Though these initiative have their merits, the article concludes that more systematic institutional mechanisms are needed. The third section introduces those institutional mechanisms: it describes the Internationa...
Archive | 2012
Philip Nuss; Stefan Bringezu; Kevin H. Gardner
Managing solid waste is one of the biggest challenges in urban areas around the world. Technologically advanced economies generate vast amounts of organic waste materials, many of which are disposed to landfills. In the future, efficient use of carbon containing waste and all other waste materials has to be increased to reduce the need for virgin raw materials acquisition, including biomass, and reduce carbon being emitted to the atmosphere therefore mitigating climate change. At end-of-life, carbon-containing waste should not only be treated for energy recovery (e.g. via incineration) but technologies should be applied to recycle the carbon for use as material feedstocks. Thermochemical and biochemical conversion technologies offer the option to utilize organic waste for the production of chemical feedstock and subsequent polymers. The routes towards synthetic materials allow a more closed cycle of materials and can help to reduce dependence on either fossil or biobased raw materials. This chapter summarizes carbon-recycling routes available and investigates how in the long-term they could be applied to enhance waste management in both industrial countries as well as developing and emerging economies. We conclude with a case study looking at the system-wide global warming potential (GWP) and cumulative energy demand (CED) of producing high-density polyethylene (HDPE) from organic waste feedstock via gasification followed by Fischer–Tropsch synthesis (FTS). Results of the analysis indicate that the use of organic waste feedstock is beneficial if greenhouse gas (GHG) emissions associated with landfill diversion are considered.
Minerals & Energy - Raw Materials Report | 2008
Markus Schüller; Andrea Estrada; Stefan Bringezu
World primary copper production is expected to increase due to growing demand. Reflecting the geographical divergence of copper deposits and demanding industries, copper is produced by various production paths, differing in regional and technological aspects and related environmental pressures. For the mitigation of environmental pressures related to global material flows and a more sustainable resource management, policy makers, producers and buyers require information on regional resource efficiencies and effects of the key processes within the global production chain. This study quantifies material flows of refined copper production and environmental pressures along the pyro‐ and hydrometallurgical paths for Chile and Germany. Inventories for involved unit processes are distinguished by region and most commonly applied technologies, including electric power supply. Different production paths are compared by environmental pressure indicators (primary energy requirements, total material requirements, wat...
Collaboration
Dive into the Stefan Bringezu's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs