Stefan Czene
Stockholm University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefan Czene.
Free Radical Research | 2005
Siamak Haghdoost; Stefan Czene; Ingemar Näslund; Sven Skog; Mats Harms-Ringdahl
8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG) is one of the mutagenic base modifications produced in DNA by the reaction of reactive oxygen species. The biological significance of 8-oxo-dG is shown by the existence of repair pathways that are able to recognize and remove this lesion from both DNA and the nucleotide pool. The final outcome of these evolutionarily conserved repair mechanisms in man is excretion of 8-oxo-dG/8-oxo-Gua from the intracellular to extracellular milieu including the blood plasma and urine. The aim of this investigation was to establish dose response relations for radiation-induced appearance of extracellular 8-oxo-dG in cellular model systems. Here we report on excretion of 8-oxo-dG after in vitro irradiation of whole blood and isolated lymphocytes with clinically relevant doses. We find that this excretion is dependent on dose and individual repair capacity, and that it saturates above doses of 0.5–1 Gy of gamma radiation. Our data also suggest that the nucleotide pool is a significant target that contributes to the levels of extracellular 8-oxo-dG; hence the mutagenic target for oxidative stress is not limited to the DNA molecule only. We conclude that extracellular 8-oxo-dG levels after in vitro irradiation have a potential to be used as a sensitive marker for oxidative stress.
Biochemical and Biophysical Research Communications | 2002
Stefan Czene; Elisabetta Testa; Jonas Nygren; Igor Belyaev; Mats Harms-Ringdahl
Cell suspensions enriched in cells at various stages of apoptosis were obtained by separation of irradiated human peripheral blood lymphocytes on density gradients at different post-irradiation times. The state of DNA fragmentation in the cells was determined by comet assay and pulsed field gel electrophoresis. The morphologically distinguishable features of apoptosis such as chromatin condensation and cell shrinkage correlated with discrete stages of DNA fragmentation. It was found that >/=50 kbp fragmentation of DNA occurs already in cells of normal density whereas the subsequent DNA fragmentation onto fragments <50 kbp occurs in parallel with cell shrinkage and simultaneous increase in cell density. The observed stages of DNA fragmentation seem to be separated in time that could allow in case of abortive apoptosis formation of chromosomal aberrations.
Radiation Research | 2001
Igor Belyaev; Stefan Czene; Mats Harms-Ringdahl
Abstract Belyaev, I. Y., Czene, S. and Harms-Ringdahl, M. Changes in Chromatin Conformation during Radiation-Induced Apoptosis in Human Lymphocytes. Radiat. Res. 156, 355–364 (2001). Human peripheral lymphocytes in G0 phase were irradiated with 1–5 Gy of γ rays. The biochemical and morphological changes characteristic of apoptosis were examined for 72 h after irradiation. In parallel, changes in chromatin conformation were studied by the method of anomalous viscosity time dependence (AVTD) and by measurements of nuclear halo size. An immediate and dose-dependent relaxation of chromatin, which became saturated at doses above 2–3 Gy, was revealed by the AVTD method. The state of relaxed chromatin lasted up to 12–24 h after irradiation, a response considerably longer than the time attributable to repair of radiation-induced DNA breaks. Measurements of nuclear halo size also indicated the initial relaxation of chromatin in the irradiated cells and its subsequent condensation. This condensation of chromatin as revealed with AVTD correlated well with nuclear condensation, as measured with dual fluorescence staining, and with DNA fragmentation, as measured by conventional and pulsed-field gel electrophoresis (PFGE). Late apoptotic cells did not contribute significantly to the AVTD signal, showing that the chromatin of these cells was completely condensed and fragmented.
Mutagenesis | 2013
Siv Osterman Golkar; Stefan Czene; Amulya Gokarakonda; Siamak Haghdoost
Imbalance in the nucleotide pool of mammalian cells has been shown to result in genotoxic damage. The goal of this study was to devise a sensitive, reproducible and simple method for detection of nucleotide pool changes in mammalian cells that could be used for problem-solving activities in drug development, e.g. mechanistic explanation of a positive response in a mammalian in vitro genotoxicity test. The method evaluated in this study is based on ethanol extraction of the total nucleotide pool, heat treatment and filtration, treatment with calf intestine alkaline phosphatase to convert nucleotides to nucleosides and analysis of the nucleosides by high-performance liquid chromatography with ultraviolet detection. The method was applied to measure the intracellular levels of deoxyribonucleotides in mouse lymphoma (ML) L5178Y cells treated with various concentrations of a model compound, hydroxyurea (HU), a ribonucleotide reductase inhibitor. DNA strand breakage and micronuclei formation were assessed in the same experiments. Imbalance of nucleotide pool (i.e. changes in the relative ratios between individual nucleotide pools) in HU-treated ML cells has been observed already at a concentration of 0.01 mmol/l, whereas genotoxic effects became apparent only at higher concentrations of HU (i.e. 0.25 mmol/l and higher) as indicated by formation of DNA strand breaks and micronuclei.
Cytogenetic and Genome Research | 2004
Gunilla Olsson; Stefan Czene; Dag Jenssen; Mats Harms-Ringdahl
Dense ionization tracks from high linear energy transfer (LET) radiations form multiple damaged sites (MDS), which involve several types of DNA lesions in close vicinity. The primary DNA damage triggers sensor proteins that activate repair processes, cell cycle control or eventually apoptosis in subsequent cellular responses. The question how homologous recombination (HR) and non-homologous end joining (NHEJ) interact in the repair of radiation-induced DNA damage of MDS type has been addressed in different model systems but several questions remain to be answered. We have therefore challenged cells with treatments of ionizing radiation of different qualities to investigate whether primary DNA damages of different complexity are reflected in the processes of repair by HR as well as cell survival. We used the V79 derived SPD8 cell line to determine the induction of HR in the hprt exon 7 and clonogenic assay for survival in response to radiation. SPD8 cells were irradiated with γ-rays (137Cs 0.5 keV/µm), boron ions (40 and 80 keV/µm) and nitrogen ions (140 keV/µm), with doses up to 5 Gy. Analysis of clonogenic survival showed that B-ions (80 keV/µm) and N-ions were more toxic than γ-rays, 4.1 and 5.0 times respectively, while B-ions at 40 keV/µm were 2.0 times as toxic as γ-rays. Homologous recombination in the cells exposed to B-ions (80 keV/µm) increased 2.9 times, a significant response as compared to cells exposed to γ-rays, while for B-ions (40 keV/µm) and N-ions a nonsignificant increase in HR of 1.2 and 1.4, respectively, was observed. We hypothesize that the high-LET generated formation of MDS is responsible for the enhanced cytotoxicity as well as for the mobilization of the HR machinery.
Xenobiotica | 2013
Johan Bylund; Carl Petersson; Anders Lindgren; Susanne Olofsson; Stefan Czene
1. In vitro metabolic profiling and in vitro genotoxicity assessment are important aspects of the drug discovery program as they eliminate harmful compounds from further development. In standard in vitro genotoxicity testing, induced rat liver S9 is used as an exogenous bio-activation system for detecting promutagens. In this study we show that rat liver S9 is an insufficient system regarding the conversion of TRPV1 antagonists of the benzothiazole amide series into relevant in vivo metabolites. 2. Human and rat hepatocyte experiments demonstrated generation of an aryl amine metabolite that was subsequently N-acetylated. The hydrolyzed metabolites as well as the parent compound were also metabolized into glutathione (GSH) conjugates. Rat liver S9 exhibited a very low amide hydrolysis capacity and no formation of GSH conjugates when supplemented with NADPH and GSH. 3. The discrepancy in metabolic capability between hepatocytes and rat liver S9 led to confounding results in in vitro genotoxicity assessment for this chemical class as judged by the results of Ames test, mouse lymphoma assay, SOS/umu test and Comet assay in rat hepatocytes. 4. This study highlights the pivotal role that understanding the mechanism of metabolite formation has in interpreting as well as designing reliable and relevant in vitro genotoxicity experiments.
Mutagenesis | 2013
Rikard Åsgård; Siamak Haghdoost; Siv Osterman Golkar; Björn Hellman; Stefan Czene
The mutagenicity of 4-nitro-o-phenylenediamine (4-NOPD) and o-phenylenediamine (OPD) was compared using the Mouse Lymphoma Assay (MLA) with or without metabolic activation (S9). As expected, OPD was found to be a more potent mutagen than 4-NOPD. To evaluate possible mechanisms behind their mutagenic effects, the following end points were also monitored in cells that had been exposed to similar concentrations of the compounds as in the MLA: general DNA damage (using a standard protocol for the Comet assay); oxidative DNA damage (using a modified procedure for the Comet assay in combination with the enzyme hOGG1); reactive oxygen species (ROS; using the CM-H2DCFDA assay); and the balance of the nucleotide pool (measured after conversion to the corresponding nucleosides dC, dT, dG and dA using high-performance liquid chromatography). Both compounds increased the level of general DNA damage. Again, OPD was found to be more potent than 4-NOPD (which only increased the level of general DNA damage in the presence of S9). Although less obvious for OPD, both compounds increased the level of oxidative DNA damage. However, an increase in intracellular ROS was only observed in cells exposed to 4-NOPD, both with and without S9 (which in itself induced oxidative stress). Both compounds decreased the concentrations of dA, dT and dC. A striking effect of OPD was the sharp reduction of dA observed already at very low concentration, both with and without S9 (which in itself affected the precursor pool). Taken together, our results indicate that indirect effects on DNA, possibly related to an unbalanced nucleotide pool, mediate the mutagenicity and DNA-damaging effects of 4-NOPD and OPD to a large extent. Although induction of intracellular oxidative stress seems to be a possible mechanism behind the genotoxicity of 4-NOPD, this pathway seems to be of less importance for the more potent mutagen OPD.
Free Radical Biology and Medicine | 2006
Siamak Haghdoost; Lena Sjölander; Stefan Czene; Mats Harms-Ringdahl
Biochemical Journal | 1997
Stefan Czene; Mona Tibäck; Mats Harms-Ringdahl
Mutation Research-dna Repair | 1995
Stefan Czene; Mats Harms-Ringdahl