Stefan Dröse
Goethe University Frankfurt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefan Dröse.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Virginie Rhein; Xiaomin Song; Andreas Wiesner; Lars M. Ittner; Ginette Baysang; Fides Meier; Laurence Ozmen; Horst Bluethmann; Stefan Dröse; Ulrich Brandt; Egemen Savaskan; Christian Czech; Jürgen Götz; Anne Eckert
Alzheimers disease (AD) is characterized by amyloid-beta (Aβ)-containing plaques, neurofibrillary tangles, and neuron and synapse loss. Tangle formation has been reproduced in P301L tau transgenic pR5 mice, whereas APPswPS2N141I double-transgenic APP152 mice develop Aβ plaques. Cross-breeding generates triple transgenic (tripleAD) mice that combine both pathologies in one model. To determine functional consequences of the combined Aβ and tau pathologies, we performed a proteomic analysis followed by functional validation. Specifically, we obtained vesicular preparations from tripleAD mice, the parental strains, and nontransgenic mice, followed by the quantitative mass-tag labeling proteomic technique iTRAQ and mass spectrometry. Within 1,275 quantified proteins, we found a massive deregulation of 24 proteins, of which one-third were mitochondrial proteins mainly related to complexes I and IV of the oxidative phosphorylation system (OXPHOS). Notably, deregulation of complex I was tau dependent, whereas deregulation of complex IV was Aβ dependent, both at the protein and activity levels. Synergistic effects of Aβ and tau were evident in 8-month-old tripleAD mice as only they showed a reduction of the mitochondrial membrane potential at this early age. At the age of 12 months, the strongest defects on OXPHOS, synthesis of ATP, and reactive oxygen species were exhibited in the tripleAD mice, again emphasizing synergistic, age-associated effects of Aβ and tau in perishing mitochondria. Our study establishes a molecular link between Aβ and tau protein in AD pathology in vivo, illustrating the potential of quantitative proteomics.
Neurobiology of Aging | 2009
Susanne Hauptmann; Isabel Scherping; Stefan Dröse; Ulrich Brandt; Kathrin Schulz; Marina Jendrach; Kristina Leuner; Anne Eckert; Walter E. Müller
Recent evidence suggests mitochondrial dysfunction as a common early pathomechanism in Alzheimers disease integrating genetic factors related to enhanced amyloid-beta (Ass) production and tau-hyperphosphorylation with aging, as the most relevant sporadic risk factor. To further clarify the synergistic effects of aging and Ass pathology, we used isolated mitochondria of double Swedish and London mutant APP transgenic mice and of non-tg littermates. Pronounced mitochondrial dysfunction in adult Thy-1 APP mice, such as a drop of mitochondrial membrane potential and reduced ATP-levels already appeared at 3 months when elevated intracellular but not extracellular Ass deposits are present. Mitochondrial dysfunction was associated with higher levels of reactive oxygen species, an altered Bcl-xL/Bax ratio and reduction of COX IV activity. We observed significant decreases in state 3 respiration and FCCP-uncoupled respiration in non-tg mice after treatment with extracellular Ass. Similar deficits were seen only in aged Thy-1 APP mice, probably due to compensation within the respiratory chain in young animals. We conclude that Ass dependent mitochondrial dysfunction starts already at 3 months in this AD model before extracellular deposition of Ass and progression accelerates substantially with aging.
Advances in Experimental Medicine and Biology | 2012
Stefan Dröse; Ulrich Brandt
The mitochondrial respiratory chain is a major source of reactive oxygen species (ROS) in eukaryotic cells. Mitochondrial ROS production associated with a dysfunction of respiratory chain complexes has been implicated in a number of degenerative diseases and biological aging. Recent findings suggest that mitochondrial ROS can be integral components of cellular signal transduction as well. Within the respiratory chain, complexes I (NADH:ubiquinone oxidoreductase) and III (ubiquinol:cytochrome c oxidoreductase; cytochrome bc (1) complex) are generally considered as the main producers of superoxide anions that are released into the mitochondrial matrix and the intermembrane space, respectively. The primary function of both respiratory chain complexes is to employ energy supplied by redox reactions to drive the vectorial transfer of protons into the mitochondrial intermembrane space. This process involves a set of distinct electron carriers designed to minimize the unwanted leak of electrons from reduced cofactors onto molecular oxygen and hence ROS generation under normal circumstances. Nevertheless, it seems plausible that superoxide is derived from intermediates of the normal catalytic cycles of complexes I and III. Therefore, a detailed understanding of the molecular mechanisms driving these enzymes is required to understand mitochondrial ROS production during oxidative stress and redox signalling. This review summarizes recent findings on the chemistry and control of the reactions within respiratory complexes I and III that result in increased superoxide generation. Regulatory contributions of other components of the respiratory chain, especially complex II (succinate:ubiquinone oxidoreductase) and the redox state of the ubiquinone pool (Q-pool) will be briefly discussed.
Journal of Biological Chemistry | 2008
Stefan Dröse; Ulrich Brandt
Production of reactive oxygen species (ROS) by the mitochondrial respiratory chain is considered to be one of the major causes of degenerative processes associated with oxidative stress. Mitochondrial ROS has also been shown to be involved in cellular signaling. It is generally assumed that ubisemiquinone formed at the ubiquinol oxidation center of the cytochrome bc1 complex is one of two sources of electrons for superoxide formation in mitochondria. Here we show that superoxide formation at the ubiquinol oxidation center of the membrane-bound or purified cytochrome bc1 complex is stimulated by the presence of oxidized ubiquinone indicating that in a reverse reaction the electron is transferred onto oxygen from reduced cytochrome bL via ubiquinone rather than during the forward ubiquinone cycle reaction. In fact, from mechanistic studies it seems unlikely that during normal catalysis the ubisemiquinone intermediate reaches significant occupancies at the ubiquinol oxidation site. We conclude that cytochrome bc1 complex-linked ROS production is primarily promoted by a partially oxidized rather than by a fully reduced ubiquinone pool. The resulting mechanism of ROS production offers a straightforward explanation of how the redox state of the ubiquinone pool could play a central role in mitochondrial redox signaling.
Neurobiology of Disease | 2007
Hans-Hermann Hoepken; Suzana Gispert; Blas Morales; Oliver Wingerter; Domenico Del Turco; Alexander Mülsch; Robert L. Nussbaum; Klaus Müller; Stefan Dröse; Ulrich Brandt; Thomas Deller; Brunhilde Wirth; Alexei P. Kudin; Wolfram S. Kunz; Georg Auburger
Oxidative stress and protein aggregation are biochemical hallmarks of Parkinsons disease (PD), a frequent sporadic late-onset degenerative disorder particularly of dopaminergic neurons in the substantia nigra, resulting in impaired spontaneous movement. PARK6 is a rare autosomal-recessively inherited disorder, mimicking the clinical picture of PD with earlier onset and slower progression. Genetic data demonstrated PARK6 to be caused by mutations in the protein PINK1, which is localized to mitochondria and has a serine-threonine kinase domain. To study the effect of PINK1 mutations on oxidative stress, we used primary fibroblasts and immortalized lymphoblasts from three patients homozygous for G309D-PINK1. Oxidative stress was evident from increases in lipid peroxidation and in antioxidant defenses by mitochondrial superoxide dismutase and glutathione. Elevated levels of glutathione reductase and glutathione-S-transferase were also observed. As a putative cause of oxidation, a mild decrease in complex I activity and a trend to superoxide elevation were detectable. These data indicate that PINK1 function is critical to prevent oxidative damage and that peripheral cells may be useful for studies of progression and therapy of PARK6.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2009
Judith Haendeler; Stefan Dröse; Nicole Büchner; Sascha Jakob; Joachim Altschmied; Christine Goy; Ioakim Spyridopoulos; Andreas M. Zeiher; Ulrich Brandt; Stefanie Dimmeler
Objective—The enzyme telomerase and its catalytic subunit the telomerase reverse transcriptase (TERT) are important for maintenance of telomere length in the nucleus. Recent studies provided evidence for a mitochondrial localization of TERT. Therefore, we investigated the exact localization of TERT within the mitochondria and its function. Methods and Results—Here, we demonstrate that TERT is localized in the matrix of the mitochondria. TERT binds to mitochondrial DNA at the coding regions for ND1 and ND2. Binding of TERT to mitochondrial DNA protects against ethidium bromide–induced damage. TERT increases overall respiratory chain activity, which is most pronounced at complex I and dependent on the reverse transcriptase activity of the enzyme. Moreover, mitochondrial reactive oxygen species are increased after genetic ablation of TERT by shRNA. Mitochondrially targeted TERT and not wild-type TERT revealed the most prominent protective effect on H2O2-induced apoptosis. Lung fibroblasts from 6-month-old TERT−/− mice (F2 generation) showed increased sensitivity toward UVB radiation and heart mitochondria exhibited significantly reduced respiratory chain activity already under basal conditions, demonstrating the protective function of TERT in vivo. Conclusion—Mitochondrial TERT exerts a novel protective function by binding to mitochondrial DNA, increasing respiratory chain activity and protecting against oxidative stress–induced damage.
FEBS Letters | 2003
Ulrich Brandt; Stefan Kerscher; Stefan Dröse; Klaus Zwicker; Volker Zickermann
The modular evolutionary origin of NADH:ubiquinone oxidoreductase (complex I) provides useful insights into its functional organization. Iron–sulfur cluster N2 and the PSST and 49 kDa subunits were identified as key players in ubiquinone reduction and proton pumping. Structural studies indicate that this ‘catalytic core’ region of complex I is clearly separated from the membrane. Complex I from Escherichia coli and Klebsiella pneumoniae was shown to pump sodium ions rather than protons. These new insights into structure and function of complex I strongly suggest that proton or sodium pumping in complex I is achieved by conformational energy transfer rather than by a directly linked redox pump.
Biochemical Journal | 2006
Marina A. Schwab; Sven W. Sauer; Jürgen G. Okun; Leo Nijtmans; Richard J. Rodenburg; Lambert P. van den Heuvel; Stefan Dröse; Ulrich Brandt; Georg F. Hoffmann; Henk ter Laak; Stefan Kölker; Jan A.M. Smeitink
Mitochondrial dysfunction during acute metabolic crises is considered an important pathomechanism in inherited disorders of propionate metabolism, i.e. propionic and methylmalonic acidurias. Biochemically, these disorders are characterized by accumulation of propionyl-CoA and metabolites of alternative propionate oxidation. In the present study, we demonstrate uncompetitive inhibition of PDHc (pyruvate dehydrogenase complex) by propionyl-CoA in purified porcine enzyme and in submitochondrial particles from bovine heart being in the same range as the inhibition induced by acetyl-CoA, the physiological product and known inhibitor of PDHc. Evaluation of similar monocarboxylic CoA esters showed a chain-length specificity for PDHc inhibition. In contrast with CoA esters, non-esterified fatty acids did not inhibit PDHc activity. In addition to PDHc inhibition, analysis of respiratory chain and tricarboxylic acid cycle enzymes also revealed an inhibition by propionyl-CoA on respiratory chain complex III and alpha-ketoglutarate dehydrogenase complex. To test whether impairment of mitochondrial energy metabolism is involved in the pathogenesis of propionic aciduria, we performed a thorough bioenergetic analysis in muscle biopsy specimens of two patients. In line with the in vitro results, oxidative phosphorylation was severely compromised in both patients. Furthermore, expression of respiratory chain complexes I-IV and the amount of mitochondrial DNA were strongly decreased, and ultrastructural mitochondrial abnormalities were found, highlighting severe mitochondrial dysfunction. In conclusion, our results favour the hypothesis that toxic metabolites, in particular propionyl-CoA, are involved in the pathogenesis of inherited disorders of propionate metabolism, sharing mechanistic similarities with propionate toxicity in micro-organisms.
Journal of Molecular Medicine | 2008
Anne Eckert; Susanne Hauptmann; Isabel Scherping; Jessica Meinhardt; Virginie Rhein; Stefan Dröse; Ulrich Brandt; Marcus Fändrich; Walter E. Müller; Jürgen Götz
We recently provided evidence for a mitochondrial dysfunction in P301L tau transgenic mice, a strain modeling the tau pathology of Alzheimer’s disease (AD) and frontotemporal dementia (FTD). In addition to tau aggregates, the AD brain is further characterized by Aβ peptide-containing plaques. When we addressed the role of Aβ, this indicated a synergistic action of tau and Aβ pathology on the mitochondria. In the present study, we compared the toxicity of different Aβ42 conformations in light of recent studies suggesting that oligomeric rather than fibrillar Aβ might be the actual toxic species. Interestingly, both oligomeric and fibrillar, but not disaggregated (mainly monomeric) Aβ42 caused a decreased mitochondrial membrane potential in cortical brain cells obtained from FTD P301L tau transgenic mice. This was not observed with cerebellar preparations indicating selective vulnerability of cortical neurons. Furthermore, we found reductions in state 3 respiration, the respiratory control ratio, and uncoupled respiration when incubating P301L tau mitochondria either with oligomeric or fibrillar preparations of Aβ42. Finally, we found that aging specifically increased the sensitivity of mitochondria to oligomeric Aβ42 damage indicating that oligomeric and fibrillar Aβ42 are both toxic, but exert different degrees of toxicity.
Biochimica et Biophysica Acta | 2013
Lea Bleier; Stefan Dröse
Apart from complex I (NADH:ubiquinone oxidoreductase) the mitochondrial cytochrome bc1 complex (complex III; ubiquinol:cytochrome c oxidoreductase) has been identified as the main producer of superoxide and derived reactive oxygen species (ROS) within the mitochondrial respiratory chain. Mitochondrial ROS are generally linked to oxidative stress, aging and other pathophysiological settings like in neurodegenerative diseases. However, ROS produced at the ubiquinol oxidation center (center P, Qo site) of complex III seem to have additional physiological functions as signaling molecules during cellular processes like the adaptation to hypoxia. The molecular mechanism of superoxide production that is mechanistically linked to the electron bifurcation during ubiquinol oxidation is still a matter of debate. Some insight comes from extensive kinetic studies with mutated complexes from yeast and bacterial cytochrome bc1 complexes. This review is intended to bridge the gap between those mechanistic studies and investigations on complex III ROS in cellular signal transduction and highlights factors that impact superoxide generation. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.